Pages

Sabtu, 08 Desember 2012

alam semesta 1


Galaksi Bima Sakti

Bima Sakti (dalam bahasa Inggris Milky Way, yang berasal dari bahasa Latin Via Lactea, diambil lagi dari bahasa Yunani Ga?a??a? Galaxias yang berarti "susu") adalah galaksi spiral yang besar termasuk dalam tipe Hubble SBbc dengan total masa sekitar 10^{12} massa matahari, yang memiliki 200-400 miliar bintang dengan diameter 100.000 tahun cahaya dan ketebalan 1000 tahun cahaya.[
1] Jarak antara matahari dan pusat galaksi diperkirakan 27.700 tahun cahaya. Di dalam galaksi bimasakti terdapat sistem Tata Surya, yang didalamnya terdapat planet Bumi tempat kita tinggal. Diduga di pusat galaksi bersemayam lubang hitam supermasif (black hole). Sagitarius A dianggap sebagai lokasi lubang hitam supermasif ini. Tata surya kita memerlukan waktu 225–250 juta tahun untuk menyelesaikan satu orbit, jadi telah 20–25 kali mengitari pusat galaksi dari sejak saat terbentuknya. Kecepatan orbit tata surya adalah 217 km/d.

Di dalam bahasa Indonesia, istilah "Bimasakti" berasal dari tokoh berkulit hitam dalam pewayangan, yaitu Bima. Istilah ini muncul karena orang Jawa kuno melihatnya susunan bintang-bintang yang tersebar di angkasa jika dihubungkan dan ditarik garis akan membentuk gambar Bima dililit ular naga maka disebutlah "Bimasakti". Sementara itu, masyarakat Barat menyebutnya "milky way" sebab mereka melihatnya sebagai pita kabut bercahaya putih yang membentang pada bola langit. Pita kabut atau "aura" cemerlang ini sebenarnya adalah kumpulan jutaan bintang dan juga sevolume besar debu dan gas yang terletak di piringan/bidang galaksi. Pita ini tampak paling terang di sekitar rasi Sagitarius, dan lokasi tersebut memang diyakini sebagai pusat galaksi.

Diperkirakan ada 4 spiral utama dan 2 yang lebih kecil yang bermula dari tengah galaksi. Dan dinamakan sebagai berikut:

- Lengan Norma
- Lengan Scutum-Crux
- Lengan Sagitarius
- Lengan Orion atau Lengan Lokal
- Lengan Perseus
- Lengan Cygnus atau Lengan Luar


DIMENSI

Cakram bintang Bima Sakti kira kira berdiameter 100.000 tahun cahaya (9.5×1017 km), dan diperkirakan rata rata mempunyai ketebalan 1000 tahun cahaya (9.5×1015 km). Bima Sakti diestimasikan mempunyai setidaknya 200 miliar bintang[2] dan mungkin hingga 400 miliar bintang[3]. Angka pastinya tergantung dari jumlah bintang bermassa rendah, yang sangat sulit dipastikan. Melebihi bagian cakram bintang, terletak piringan gas yang lebih tebal. Observasi terakhir mengindikasikan bahwa piringan gas Bima Sakti mempunyai ketebalan sekitar 12.000 tahun cahaya (1.1×1017 km) - sebesar dua kali nilai yang diterima sebelumnya. Sebagai panduan ukuran fisik Bima Sakti, sebagai misal kalau diameternya dijadikan 100 m, Tata Surya, termasuk awan oort, akan berukuran tidak lebih dari 1 mm.

Cahaya galaksi memancar lebih jauh, tapi ini dibatasi oleh orbit dari dua satelit Bima Sakti yaitu Awan Magellan Besar dan Kecil (the Large and the Small Magellanic Clouds), yang memiliki perigalacticon kurang lebih 180.000 tahun cahaya (1.7×1018 km). Pada jarak ini dan lebih jauh selanjutnya, orbit-orbit dari obyek sekitar akan didisrupsi oleh awan magelan, dan obyek obyek itu kemungkinan besar akan terhempas keluar dari Bima Sakti.

Perhitungan terakhir oleh teleskop Very Long Baseline Array (VLBA) menunjukkan bahwa ukuran Bima Saki adalah lebih besar dari yang diketahui sebelumnya. Ukuran Bima Sakti terakhir sekarang dipercaya adalah mirip seperti tetangga galaksi terdekat, galaksi Andromeda. Dengan menggunakan VLBA untuk mengukur geseran daerah formasi bintang-bintang yang terletak jauh ketika bumi sedang mengorbit di posisi yang berlawanan dari matahari, para ilmuwan dapat mengukur jarak dari berbagai daerah itu dengan assumsi yang lebih sedikit dari usaha pengukuran sebelumnya. Estimasi kecepatan rotasi terbaru dan lebih akurat (yang kemudian menunjukan dark matter yang terkandung di dalam galaksi) adalah 914,000 km/jam. Nilai ini jauh lebih tinggi dari nilai umum sebelumnya 792,000 km/jam. Hasil ini memberi kesimpulan bahwa total masa Bima Sakti adalah sekitar 3 trillion bintang, atau kira kira 50% lebih besar dari perkiraan sebelumnya.

Sumber : http://id.wikipedia.org/wiki/Galaksi_Bimasakt
Sistem Tata Surya Planet

Matahari adalah bola raksasa yang terbentuk dari gas hidrogen dan helium. Matahari termasuk bintang berwarna putih yang berperan sebagai pusat tata surya. Seluruh komponen tata surya termasuk 8 planet dan satelit masing-masing, planet-planet kerdil, asteroid, komet, dan debu angkasa berputar mengelilingi Matahari. Di samping sebagai pusat peredaran, Matahari juga merupaka
n sumber energi untuk kehidupan yang berkelanjutan. Panas Matahari menghangatkan bumi dan membentuk iklim, sedangkan cahayanya menerangi Bumi serta dipakai oleh tumbuhan untuk proses fotosintesis. Tanpa Matahari, tidak akan ada kehidupan di Bumi karena banyak reaksi kimia yang tidak dapat berlangsung.

Nicolaus Copernicus adalah orang pertama yang mengemukakan teori bahwa Matahari adalah pusat peredaran tata surya pada abad 16. Teori ini kemudian dibuktikan oleh Galileo Galilei dan pengamat angkasa lainnya. Teori yang kemudian dikenal dengan nama heliosentrisme ini mematahkan teori geosentrisme (bumi sebagai pusat tata surya) yang dikemukakan oleh Ptolemeus dan telah bertahan sejak abad ke dua sebelum masehi. Konsep fusi nuklir yang dikemukakan oleh Subrahmanyan Chandrasekhar dan Hans Bethe pada tahun 1930 akhirnya dapat menjelaskan apa itu Matahari secara tepat.

Karakteristik umum Matahari

Ilustrasi perbandingan ukuran Matahari dengan planet-planet dalam sistem tata surya. Diameter Matahari adalah 11 kali diameter planet terbesar, Jupiter. Gambar ini tidak memuat informasi perbandingan jarak.

Matahari berbentuk bola yang berpijar dengan senyawa penyusun utama berupa gas hidrogen (74%) dan helium (25%) terionisasi. Senyawa penyusun lainnya terdiri dari besi, nikel, silikon, sulfur, magnesium, karbon, neon, kalsium, dan kromium. Cahaya Matahari berasal dari hasil reaksi fusi hidrogen menjadi helium.

Berdasarkan penghitungan menggunakan Hukum Newton dengan melibatkan nilai kecepatan orbit Bumi, jarak Matahari, dan gaya gravitasi, diperoleh massa Matahari sebesar 1,989x1030 kilogram. Angka tersebut sama dengan 333.000 kali massa Bumi. Sementara itu, diameter Matahari adalah 1.392.000 kilometer atau 865.000 mil, sama dengan 109 kali diameter Bumi. Sebagai perbandingan, sebanyak 1,3 juta planet seukuran Bumi dapat masuk ke dalam Matahari. Oleh karena itu, Matahari menjadi obyek terbesar di tata surya dengan massa mencapai 99,85% dari total massa tata surya.

Matahari merupakan bintang yang paling dekat dengan Bumi, yaitu berjarak rata-rata 149.600.000 kilometer (92,96 juta mil). Jarak Matahari ke Bumi ini dikenal sebagai satuan astronomi dan biasa dibulatkan (untuk penyederhanaan hitungan) menjadi 150 juta km.

Berdasarkan penghitungan dengan metode analisis radioaktif, diketahui bahwa batuan bulan, meteorit dan batuan Bumi tertua yang pernah ditemukan berusia sekitar 4,6 miliar tahun. Sementara itu, sampel batuan Matahari belum pernah didapatkan sehingga penghitungan dilakukan secara matematika menggunakan model interior Matahari. Berdasarkan hasil penghitungan matematika adalah Matahari diperkirakan berusia 5 ± 1,5 miliar tahun. Namun, oleh karena tata surya diketahui terbentuk sebagai satu kesatuan dalam waktu yang berdekatan maka kini secara umum Matahari dianggap berusia 4,6 miliar tahun. Matahari tergolong bintang tipe G V, dengan ciri memiliki suhu permukaan sekitar 6.000 K dan umumnya bertahan selama 10 miliar tahun. Matahari diperkirakan berusia sekitar 7 miliar tahun lagi, sebelum hidrogen di intinya habis. Bila hal tersebut terjadi, Matahari akan berekspansi menjadi bintang raksasa berwarna merah yang dingin dan 'memakan' planet-planet kecil di sekitarnya (mungkin termasuk Bumi) sebelum akhirnya kembali menjadi bintang kerdil berwarna putih kembali.

Gaya gravitasi di Matahari sebanding dengan 28 kali gravitasi di Bumi. Secara teori hal tersebut berarti bila seseorang memiliki berat 100 kg di Bumi maka bila berjalan di permukaan Matahari beratnya akan terasa seperti 2.800 kg. Gravitasi Matahari memungkinkannya menarik semua komponen-komponen penyusunnya membentuk suatu bentuk bola sempurna. Gravitasi Matahari jugalah yang menahan planet-planet yang mengelilinginya tetap berada pada orbit masing-masing. Pengaruh dari gravitasi Matahari masih dapat terasa hingga jarak 2 tahun cahaya.

Radiasi Matahari, lebih dikenal sebagai cahaya Matahari, adalah campuran gelombang elektromagnetik yang terdiri dari gelombang inframerah, cahaya tampak, sinar ultraviolet.[18] Semua gelombang elektromagnetik ini bergerak dengan kecepatan sekitar 3,0 x 108 m/s.[18] Oleh karena itu radiasi atau cahaya memerlukan waktu 8 menit untuk sampai ke Bumi.[18] Matahari juga menghasilkan sinar gamma, namun frekuensinya semakin kecil seiring dengan jaraknya meninggalkan inti.

Struktur Matahari

Matahari memiliki enam lapisan yang masing-masing memiliki karakteristik tertentu. Keenam lapisan tersebut meliputi inti Matahari, zona radiatif, dan zona konvektif yang membentuk lapisan dalam (interior); fotosfer; kromosfer; dan korona sebagai daerah terluar dari Matahari.


Inti Matahari

Inti adalah area terdalam dari Matahari yang memiliki suhu sekitar 15 juta derajat Celcius (27 juta derajat Fahrenheit). Berdasarkan perbandingan radius/diameter, bagian inti berukuran seperempat jarak dari pusat ke permukaan dan 1/64 total volume Matahari. Kepadatannya adalah sekitar 150 g/cm3. Suhu dan tekanan yang sedemikian tingginya memungkinkan adanya pemecahan atom-atom menjadi elektron, proton, dan neutron. Neutron yang tidak bermuatan akan meninggalkan inti menuju bagian Matahari yang lebih luar. Sementara itu, energi panas di dalam inti menyebabkan pergerakan elektron dan proton sangat cepat dan bertabrakan satu dengan yang lain menyebabkan reaksi fusi nuklir (sering juga disebut termonuklir). Inti Matahari adalah tempat berlangsungnya reaksi fusi nuklir helium menjadi hidrogen. Energi hasil reaksi termonuklir di inti berupa sinar gamma dan neutrino memberi tenaga sangat besar sekaligus menghasilkan seluruh energi panas dan cahaya yang diterima di Bumi. Energi tersebut dibawa keluar dari Matahari melalui radiasi.


Zona radiatif

Zona radiatif adalah daerah yang menyelubungi inti Matahari. Energi dari inti dalam bentuk radiasi berkumpul di daerah ini sebelum diteruskan ke bagian Matahari yang lebih luar. Kepadatan zona radiatif adalah sekitar 20 g/cm3 dengan suhu dari bagian dalam ke luar antara 7 juta hingga 2 juta derajat Celcius. Suhu dan densitas zona radiatif masih cukup tinggi, namun tidak memungkinkan terjadinya reaksi fusi nuklir.


Zona konvektif

Zona konvektif adalah lapisan di mana suhu mulai menurun. Suhu zona konvektif adalah sekitar 2 juta derajat Celcius (3.5 juta derajat Fahrenheit). Setelah keluar dari zona radiatif, atom-atom berenergi dari inti Matahari akan bergerak menuju lapisan lebih luar yang memiliki suhu lebih rendah. Penurunan suhu tersebut menyebabkan terjadinya perlambatan gerakan atom sehingga pergerakan secara radiasi menjadi kurang efisien lagi. Energi dari inti Matahari membutuhkan waktu 170.000 tahun untuk mencapai zona konvektif.[4] Saat berada di zona konvektif, pergerakan atom akan terjadi secara konveksi di area sepanjang beberapa ratus kilometer yang tersusun atas sel-sel gas raksasa yang terus bersirkulasi. Atom-atom bersuhu tinggi yang baru keluar dari zona radiatif akan bergerak dengan lambat mencapai lapisan terluar zona konvektif yang lebih dingin menyebabakan atom-atom tersebut "jatuh" kembali ke lapisan teratas zona radiatif yang panas yang kemudian kembali naik lagi. Peristiwa ini terus berulang menyebabkan adanya pergerakan bolak-balik yang menyebabakan transfer energi seperti yang terjadi saat memanaskan air dalam panci. Oleh sebab itu, zona konvektif dikenal juga dengan nama zona pendidihan (the boiling zone). Materi energi akan mencapai bagian atas zona konvektif dalam waktu beberapa minggu.
Fotosfer

Fotosfer atau permukaan Matahari meliputi wilayah setebal 500 kilometer dengan suhu sekitar 5.500 derajat Celcius (10.000 derajat Fahrenheit).[4] Sebagian besar radiasi Matahari yang dilepaskan keluar berasal dari fotosfer. Energi tersebut diobservasi sebagai sinar Matahari di Bumi, 8 menit setelah meninggalkan Matahari.


Kromosfer

Kromosfer adalah lapisan di atas fotosfer. Warna dari kromosfer biasanya tidak terlihat karena tertutup cahaya yang begitu terang yang dihasilkan fotosfer. Namun saat terjadi gerhana Matahari total, di mana bulan menutupi fotosfer, bagian kromosfer akan terlihat sebagai bingkai berwarna merah di sekeliling Matahari. Warna merah tersebut disebabkan oleh tingginya kandungan helium di sana.


Korona

Korona merupakan lapisan terluar dari Matahari. Lapisan ini berwarna putih, namun hanya dapat dilihat saat terjadi gerhana karena cahaya yang dipancarkan tidak sekuat bagian Matahari yang lebih dalam. Saat gerhana total terjadi, korona terlihat membentuk mahkota cahaya berwarna putih di sekeliling Matahari. Lapisan korona memiliki suhu yang lebih tinggi dari bagian dalam Matahari dengan rata-rata 2 juta derajat Fahrenheit, namun di beberapa bagian bisa mencapai suhu 5 juta derajat Fahrenheit.


Pergerakan Matahari

Matahari mempunyai dua macam pergerakan, yaitu sebagai berikut :

- Matahari berotasi pada sumbunya dengan selama sekitar 27 hari untuk mencapai satu kali putaran. Gerakan rotasi ini pertama kali diketahui melalui pengamatan terhadap perubahan posisi bintik Matahari. Sumbu rotasi Matahari miring sejauh 7,25° dari sumbu orbit Bumi sehingga kutub utara Matahari akan lebih terlihat di bulan September sementara kutub selatan Matahari lebih terlihat di bulan Maret. Matahari bukanlah bola padat, melainkan bola gas, sehingga Matahari tidak berotasi dengan kecepatan yang seragam. Ahli astronomi mengemukakan bahwa rotasi bagian interior Matahari tidak sama dengan bagian permukaannya. Bagian inti dan zona radiatif berotasi bersamaan, sedangkan zona konvektif dan fotosfer juga berotasi bersama namun dengan kecepatan yang berbeda. Bagian ekuatorial (tengah) memakan waktu rotasi sekitar 24 hari sedangkan bagian kutubnya berotasi selama sekitar 31 hari. Sumber perbedaan waktu rotasi Matahari tersebut masih diteliti.

- Matahari dan keseluruhan isi tata surya bergerak di orbitnya mengelilingi galaksi Bimasakti. Matahari terletak sejauh 28.000 tahun cahaya dari pusat galaksi Bimasakti. Kecepatan rata-rata pergerakan ini adalah 828.000 km/jam sehingga diperkirakan akan membutuhkan waktu 230 juta tahun untuk mencapai satu putaran sempurna mengelilingi galaksi.


Jarak Matahari ke bintang terdekat

Sistem bintang yang terdekat dengan Matahari adalah Alpha Centauri. Bintang yang dalam kompleks tersebut yang memilkiki posisi terdekat dengan Matahari adalah Proxima Centauri, sebuah bintang berwarna merah redup yang terdapat dalam rasi bintang Centaurus. Jarak Matahari ke Proxima Centauri adalah sejauh 4,3 tahun cahaya (39.900 juta km atau 270 ribu unit astronomi), kurang lebih 270 ribu kali jarak matahai ke Bumi. Para ahli astronomi mengetahui bahwa benda-benda angkasa senantiasa bergerak dalam orbit masing-masing. Oleh karena itu, perhitungan jarak dilakukan berdasarkan pada perubahan posisi suatu bintang dalam kurun waktu tertentu dengan berpatokan pada posisinya terhadap bintang-bintang sekitar.[29] Metode pengukuran ini disebut parallaks (parallax).

Sumber : http://id.wikipedia.org/wiki/Matahari
Merkurius

Merkurius adalah planet terkecil di dalam tata surya dan juga yang terdekat dengan Matahari dengan kala revolusi 88 hari dan kala rotasi 59 hari. Kecerahan planet ini berkisar di antara -2 sampai 5,5 dalam magnitudo tampak namun tidak mudah terlihat karena sudut pandangnya dengan Matahari kecil (dengan rentangan paling jauh sebesar 28,3 derajat. Merkurius hanya bisa terlihat pada saat s
ubuh atau maghrib. Tidak begitu banyak yang diketahui tentang Merkurius karena hanya satu pesawat antariksa yang pernah mendekatinya yaitu Mariner 10 pada tahun 1974 sampai 1975. Mariner 10 hanya berhasil memetakan sekitar 40 sampai 45 persen dari permukaan planet.

Mirip dengan Bulan, Merkurius mempunyai banyak kawah dan juga tidak mempunyai satelit alami serta atmosfer. Merkurius mempunyai inti besi yang menciptakan sebuah medan magnet dengan kekuatan 0.1% dari kekuatan medan magnet bumi. Suhu permukaan dari Merkurius berkisar antara 90 sampai 700 Kelvin (-180 sampai 430 derajat Celcius).

Pengamatan tercatat dari Merkurius paling awal dimulai dari zaman orang Sumeria pada milenium ke tiga sebelum masehi. Bangsa Romawi menamakan planet ini dengan nama salah satu dari dewa mereka, Merkurius (dikenal juga sebagai Hermes pada mitologi Yunani dan Nabu pada mitologi Babilonia). Lambang astronomis untuk merkurius adalah abstraksi dari kepala Merkurius sang dewa dengan topi bersayap di atas caduceus. Orang Yunani pada zaman Hesiod menamai Merkurius Stilbon dan Hermaon karena sebelum abad ke lima sebelum masehi mereka mengira bahwa Merkurius itu adalah dua benda antariksa yang berbeda, yang satu hanya tampak pada saat Matahari terbit dan yang satunya lagi hanya tampak pada saat Matahari terbenam. Di India, Merkurius dinamai Budha, anak dari Candra sang bulan. Di budaya Tiongkok, Korea, Jepang dan Vietnam, Merkurius dinamakan "bintang air". Orang-orang Ibrani menamakannya Kokhav Hamah (כוכב חמה), "bintang dari yang panas" ("yang panas" maksudnya Matahari). Diameter Merkurius 40% lebih kecil daripada Bumi (4879,4 km), dan 40% lebih besar daripada Bulan. Ukurannya juga lebih kecil (walaupun lebih padat) daripada satelit Yupiter, Ganymede dan satelit Saturnus, Titan.
Struktur dalam

Dengan diameter sebesar 4879 km di katulistiwa, Merkurius adalah planet terkecil dari empat planet kebumian di Tata Surya. Merkurius terdiri dari 70% logam dan 30% silikat serta mempunyai kepadatan sebesar 5,43 g/cm3 hanya sedikit dibawah kepadatan Bumi. Namun apabila efek dari tekanan gravitasi tidak dihitung maka Merkurius lebih padat dari Bumi dengan kepadatan tak terkompres dari Merkurius 5,3 g/cm3 dan Bumi hanya 4,4 g/cm3.

Kepadatan Merkurius digunakan untuk menduga struktur dalamnya. Kepadatan Bumi yang tinggi tercipta karena tekanan gravitasi, terutamanya di bagian inti. Merkurius namun jauh lebih kecil dan bagian dalamnya tidak terdapat seperti bumi sehingga kepadatannya yang tinggi diduga karena planet tersebut mempunyai inti yang besar dan kaya akan besi. Para ahli bumi menaksir bahwa inti Merkurius menempati 42 % dari volumenya (inti Bumi hanya menempati 17% dari volume Bumi). Menurut riset terbaru, kemungkinan besar inti Merkurius adalah cair.

Mantel setebal 600 km menyelimuti inti Merkurius dan kerak dari Merkurius diduga setebal 100 sampai 200 km. Permukaan merkurius mempunyai banyak perbukitan yang kurus, beberapa mencapai ratusan kilometer panjangnya. Diduga perbukitan ini terbentuk karena inti dan mantel Merkurius mendingin dan menciut pada saat kerak sudah membatu.


Merkurius mengandung besi lebih banyak dari planet lainnya di tata surya dan beberapa teori telah diajukan untuk menjelaskannya. Teori yang paling luas diterima adalah bahwa Merkurius pada awalnya mempunyai perbandingan logam-silikat mirip dengan meteor Kondrit umumnya dan mempunyai massa sekitar 2,25 kali massanya yang sekarang. Namun pada awal sejarah tata surya, merkurius tertabrak oleh sebuah planetesimal berukuran sekitar seperenam dari massanya. Benturan tersebut telah melepaskan sebagian besar dari kerak dan mantel asli Merkurius dan meninggalkan intinya. Proses yang sama juga telah diajukan untuk menjelaskan penciptaan dari Bulan.

Teori yang lain menyatakan bahwa Merkurius mungkin telah terbentuk dari nebula Matahari sebelum energi keluaran Matahari telah stabil. Merkurius pada awalnya mempunyai dua kali dari massanya yang sekarang, namun dengan mengambangnya protomatahari, suhu di sekitar merkurius dapat mencapai sekitar 2500 sampai 3500 Kelvin dan mungkin mencapai 10000 Kelvin. Sebagian besar permukaan Merkurius akan menguap pada temperatur seperti itu, membuat sebuah atmosfer "uap batu" yang mungkin tertiup oleh angin surya.

Sumber : http://id.wikipedia.org/wiki/Merkurius
Venus
Venus atau Bintang Kejora adalah planet terdekat kedua dari matahari setelah Merkurius. Planet ini memiliki radius 6.052 km, diameter 12.104 km. Atmosfer Venus mengandung 97% karbondioksida (CO2) dan 3% nitrogen, sehingga hampir tidak mungkin terdapat kehidupan.
Arah rotasi Venus berlawanan dengan arah rotasi planet-planet lain. Selain , itujangka waktu rotasi Venus lebih lama daripada jangk
a waktu revolusinya dalam mengelilingi Matahari. Kala rotasinya 243 hari, sedangkan kala revolusinya 225 hari.
Kandungan atmosfernya yang pekat dengan CO2 menyebabkan suhu permukaannya sangat tinggi akibat efek rumah kaca. Suhu permukaannya maksimal 464°C. Lapisan atmosfer Venus memantulkan hampir 80 persen cahaya matahari. Sehingga kita dapat melihat Venus dengan jelas. Atmosfer Venus tebal dan selalu diselubungi oleh awan. Pakar astrobiologi berspekulasi bahwa pada lapisan awan Venus termobakteri tertentu masih dapat melangsungkan kehidupan.
Atmosfer yang tebal menyebabakan permukaan Venus sulit diamati. Namun, hasil pemetaan dengan radar yang dilakukan misi pesawat eksplorasi Magellan, yang diluncurkan pada 4 Mei 1989, menunjukkan permukaan planet Venus tampak penuh kawah dan gunung api.

Sumber : http://id.wikipedia.org/wiki/Venus

Bulan
Bulan adalah satu-satunya satelit alami Bumi, dan merupakan satelit alami terbesar ke-5 di Tata Surya. Bulan tidak mempunyai sumber cahaya sendiri dan cahaya Bulan sebenarnya berasal dari pantulan cahaya Matahari.
Jarak rata-rata Bumi-Bulan dari pusat ke pusat adalah 384.403 km, sekitar 30 kali diameter Bumi. Diameter Bulan adalah 3.474 km,[1] sedikit lebih kecil dari seperempat diameter Bum
i. Ini berarti volume Bulan hanya sekitar 2 persen volume Bumi dan tarikan gravitasi di permukaannya sekitar 17 persen daripada tarikan gravitasi Bumi. Bulan beredar mengelilingi Bumi sekali setiap 27,3 hari (periode orbit), dan variasi periodik dalam sistem Bumi-Bulan-Matahari bertanggungjawab atas terjadinya fase-fase Bulan yang berulang setiap 29,5 hari (periode sinodik).
Massa jenis Bulan (3,4 g/cm³) adalah lebih ringan dibanding massa jenis Bumi (5,5 g/cm³), sedangkan massa Bulan hanya 0,012 massa Bumi.
Bulan yang ditarik oleh gaya gravitasi Bumi tidak jatuh ke Bumi disebabkan oleh gaya sentrifugal yang timbul dari orbit Bulan mengelilingi Bumi. Besarnya gaya sentrifugal Bulan adalah sedikit lebih besar dari gaya tarik menarik antara gravitasi Bumi dan Bulan. Hal ini menyebabkan Bulan semakin menjauh dari Bumi dengan kecepatan sekitar 3,8cm/tahun.
Bulan berada dalam orbit sinkron dengan Bumi, hal ini menyebabkan hanya satu sisi permukaan Bulan saja yang dapat diamati dari Bumi. Orbit sinkron menyebabkan kala rotasi sama dengan kala revolusinya.
Di bulan tidak terdapat udara ataupun air. Banyak kawah yang terhasil di permukaan bulan disebabkan oleh hantaman komet atau asteroid. Ketiadaan udara dan air di bulan menyebabkan tidak adanya pengikisan yang menyebabkan banyak kawah di bulan yang berusia jutaan tahun dan masih utuh. Di antara kawah terbesar adalah Clavius dengan diameter 230 kilometer dan sedalam 3,6 kilometer. Ketidakadaan udara juga menyebabkan tidak ada bunyi dapat terdengar di Bulan.
Bulan adalah satu-satunya benda langit yang pernah didatangi dan didarati manusia. Obyek buatan pertama yang melintas dekat Bulan adalah wahana antariksa milik Uni Sovyet, Luna 1, obyek buatan pertama yang membentur permukaan Bulan adalah Luna 2, dan foto pertama sisi jauh bulan yang tak pernah terlihat dari Bumi, diambil oleh Luna 3, kesemua misi dilakukan pada 1959. Wahana antariksa pertama yang berhasil melakukan pendaratan adalah Luna 9, dan yang berhasil mengorbit Bulan adalah Luna 10, keduanya dilakukan pada tahun 1966. Program Apollo milik Amerika Serikat adalah satu-satunya misi berawak hingga kini, yang melakukan enam pendaratan berawak antara 1969 dan 1972.
Bulan sebagai penanda waktu
Bulan purnama adalah keadaan ketika Bulan nampak bulat sempurna dari Bumi. Pada saat itu, Bumi terletak hampir segaris di antara Matahari dan Bulan, sehingga seluruh permukaan Bulan yang diterangi Matahari terlihat jelas dari arah Bumi.
Kebalikannya adalah saat bulan mati, yaitu saat Bulan terletak pada hampir segaris di antara Matahari dan Bumi, sehingga yang 'terlihat' dari Bumi adalah sisi belakang Bulan yang gelap, alias tidak nampak apa-apa.
Di antara kedua waktu itu terdapat keadaan bulan separuh dan bulan sabit, yakni pada saat posisi Bulan terhadap Bumi membentuk sudut tertentu terhadap garis Bumi - Matahari. Pada saat itu, hanya sebagian permukaan Bulan yang disinari Matahari yang terlihat dari Bumi.

Sumber : http://id.wikipedia.org/wiki/Bulan

Mars
Mars adalah planet terdekat keempat dari Matahari. Namanya diambil dari dewa perang Romawi, Mars. Planet ini sering dijuluki sebagai "planet merah" karena tampak dari jauh berwarna kemerah-kemerahan. Ini disebabkan oleh keberadaan besi(III) oksida di permukaan planet Mars. Mars adalah planet bebatuan dengan atmosfer yang tipis. Di permukaan Mars terdapat kawah, gunung berapi, lembah, gurun, d
an lapisan es. Periode rotasi dan siklus musim Mars mirip dengan Bumi. Di Mars berdiri Olympus Mons, gunung tertinggi di Tata Surya, dan Valles Marineris, lembah terbesar di Tata Surya. Selain itu, di belahan utara terdapat cekungan Borealis yang meliputi 40% permukaan Mars.
Lingkungan Mars lebih bersahabat bagi kehidupan dibandingkan keadaan Planet Venus. Namun begitu, keadaannya tidak cukup ideal untuk manusia. Suhu udara yang cukup rendah dan tekanan udara yang rendah, ditambah dengan komposisi udara yang sebagian besar karbondioksida, menyebabkan manusia harus menggunakan alat bantu pernapasan jika ingin tinggal di sana. Misi-misi ke planet merah ini, sampai penghujung abad ke-20, belum menemukan jejak kehidupan di sana, meskipun yang amat sederhana.
Planet ini memiliki 2 buah satelit, yaitu Phobos dan Deimos. Planet ini mengorbit selama 687 hari dalam mengelilingi Matahari. Planet ini juga berotasi. Kala rotasinya 25,62 jam.
Di planet Mars, terdapat sebuah fitur unik di daerah Cydonia Mensae. Fitur ini merupakan sebuah perbukitan yang bila dilihat dari atas nampak sebagai sebuah wajah manusia. Banyak orang yang menganggapnya sebagai sebuah bukti dari peradaban yang telah lama musnah di Mars, walaupun pada masa kini, telah terbukti bahwa fitur tersebut hanyalah sebuah kenampakan alam biasa.

Ciri fisik

Mars memiliki jari-jari sekitar setengah dari jari-jari Bumi. Planet ini kurang padat bila dibandingkan dengan Bumi, dan hanya mempunyai sekitar 15% volume dan 11% massa Bumi. Luas permukaannya lebih kecil dari jumlah wilayah kering di Bumi. Mars lebih besar daripada Merkurius, tetapi Merkurius lebih padat. Akibatnya kedua planet memunyai tarikan gravitasi yang hampir mirip di permukaan—dan tarikan Mars lebih kuat sekitar kurang dari 1%. Ukuran, massa, dan gravitasi permukaan Mars berada "di antara" Bumi dan Bulan (diameter Bulan hanya setengah dari Mars, sementara Bumi dua kalinya; Bumi sembilan kali lebih besar dari Mars, dan Bulan satu per sembilannya). Kenampakan permukaan Mars yang merah-jingga diakibatkan oleh keberadaan besi(III) oksida, yang lebih dikenal dengan nama hematite.


Geologi
Berdasarkan pengamatan orbit dan pemeriksaan terhadap kumpulan meteorit Mars, permukaan Mars terdiri dari basalt. Beberapa bukti menunjukkan bahwa sebagian permukaan Mars memunyai silika yang lebih kaya daripada basalt biasa, dan mungkin mirip dengan batu-batu andesit di Bumi. Sebagian besar permukaan Mars dilapisi oleh debu besi(III) oksida yang memberinya kenampakan merah.
Saat ini Mars tidak memunyai medan magnet global, namun hasil pengamatan menunjukkan bahwa sebagian kerak planet termagnetisasi, dan medan magnet global pernah ada pada masa lalu. Salah satu teori yang diumumkan pada tahun 1999 dan diperiksa ulang pada Oktober 2005 (dengan bantuan Mars Global Surveyor) menunjukkan bahwa empat miliar tahun yang lalu, dinamo Mars berhenti berfungsi dan mengakibatkan medan magnetnya menghilang. Ada pula teori bahwa asteroid yang sangat besar pernah menghantam Mars dan mematikan medan magnetnya.
Inti Mars, yang jari-jarinya diperkirakan sebesar 1.480 km, terdiri dari besi dan 14-17% sulfur. Inti besi sulfida ini cair. Lapisan di atas inti Mars adalah mantel silikat yang membentuk banyak objek tektonik dan vulkanik di Mars, tetapi saat ini mantel tersebut sudah tidak aktif. Di atas lapisan mantel adalah kerak, yang ketebalan rata-ratanya sekitar 50 km, dan ketebalan maksimumnya 125 km.
Saat pembentukan Tata Surya, Mars terbentuk dari cakram protoplanet yang mengelilingi Matahari Matahari. Planet ini punya ciri kimia yang berbeda karena letaknya di Tata Surya. Unsur dengan titik didih yang rendah seperti klorin, fosfor, dan sulfur ada dalam jumlah yang lebih besar daripada di Bumi. Unsur-unsur tersebut kemungkinan dihalau dari daerah yang dekat dengan Matahari oleh angin surya muda yang kuat.
Setelah terbentuk, planet-planet melewati masa "Pengeboman Berat Akhir". Bekas tubrukan dari masa tersebut dapat dilihat di 60% permukaan Mars. 40% permukaan Mars adalah bagian dari cekungan yang diakibatkan oleh tubrukan objek sebesar Pluto empat miliar tahun yang lalu. Cekungan di belahan utara Mars yang membentang sejauh 10.600 km ini kini dikenal dengan nama cekungan Borealis.
Sejarah geologi Mars dapat dibagi menjadi beberapa masa, tetapi berikut adalah tiga masa utama:
- Masa Noachis (dinamai dari Noachis Terra): Pembentukan permukaan tertua Mars, antara 4,5 miliar hingga 3,5 miliar tahun yang lalu. Permukaan dari masa Noachis ada dalam banyak kawah tubrukan yang besar. Tonjolan Tharsis, dataran tinggi vulkanik, diduga terbentuk pada masa ini. Pada akhir masa ini banjir besar juga terjadi.
- Masa Hesperia (dinamai dari Hesperia Planum): 3,5 miliar tahun yang lalu hingga 2,9–3,3 miliar tahun yang lalu. Masa ini ditandai dengan pembentukan dataran lava.
- Masa Amazonis (dinamai dari Amazonis Planitia): 2,9–3,3 miliar tahun yang lalu hingga sekarang. Olympus Mons terbentuk pada periode ini, dan begitu pula aliran lava lain.
Aktivitas geologi masih berlangsung di Mars. Athabasca Valles merupakan tempat mengalirnya lava sejak 200 juta tahun yang lalu. Aliran air di graben Cerberus Fossae muncul sekitar 20 juta tahun yang lalu, yang merupakan tanda-tanda terjadinya intrusi vulkanik. Pada 19 Februari 2008, citra yang diabadikan oleh Mars Reconnaissance Orbiter menunjukkan bukti terjadinya longsor di tebing setinggi 700 m.
Berdasarkan data dari wahana Phoenix, tanah Mars terdiri dari unsur seperti magnesium, sodium, potasium, dan klorida. Nutrien tersebut dapat ditemui di kebun Bumi dan penting dalam pertumbuhan tanaman.[25] Percobaan yang dilakukan oleh wahana Phoenix menunjukkan bahwa tanah Mars punya pH sebesar 8,3, dan mengandung garam perklorat.
Warna bubuk dapat ditemui di seluruh Mars. Seringkali warna bubuk baru muncul di lereng curam kawah, palung, dan lembah. Warna bubuk awalnya berwarna gelap, dan seiring berjalannya waktu, warnanya menjadi semakin menjadi terang. Kadang-kadang warna bubuk muncul dalam ukuran yang kecil, dan lalu melebar hingga ratusan meter. Warna bubuk juga mengikuti tepi batuan. Berdasarkan teori yang banyak diterima, warna bubuk merupakan lapisan tanah gelap di bawah yang muncul karena longsor atau badai debu. Ada pula penjelasan lain, yang melibatkan air, dan bahkan pertumbuhan organisme.
Hidrologi
Air tidak dapat bertahan di permukaan Mars karena tekanan atmosfernya yang rendah. Di ketinggian terendah, air masih dapat bertahan dalam waktu yang singkat. Dua lapisan es di Mars diduga terdiri dari air. Jika dicairkan, volume air di lapisan es kutub selatan mampu melapisi seluruh permukaan planet dengan kedalaman 11 meter. Lapisan permafrost terbentang dari kutub hingga lintang 60°.
Es air dalam jumlah besar diduga terperangkap di bawah lapisan kriosfer Mars. Data dari Mars Express dan Mars Reconnaissance Orbiter menunjukkan keberadaan es air yang besar di kedua kutub (Juli 2005) dan lintang tengah (November 2008). Wahana Phoenix secara langsung mengambil sampel es air di Mars pada 31 Juli 2008.
Dari kenampakan permukaan Mars dapat dilihat bahwa air pernah mengalir di permukaan planet tersebut. Saluran banjir besar yang disebut saluran keluar (outflow channel) dapat ditemui di 25 tempat, dan diduga merupakan tanda-tanda terjadinya erosi pada masa lepasnya air dari akuifer di bawah tanah, meskipun struktur tersebut juga diduga diakibatkan oleh glasier atau lava. Saluran termuda diduga terbentuk sekitar beberapa juta tahun yang lalu. Di tempat lain, terutama di wilayah tertua permukaan Mars, jaringan lembah yang bercabang menyebar di sepanjang bentang alam. Ciri dan persebaran lembah tersebut menunjukkan bahwa lembah tersebut dibentuk oleh limpasan permukaan yang diakibatkan oleh hujan atau salju pada awal sejarah Mars. Aliran di bawah permukaan dan proses pengikisan tanah dari lereng oleh air tanah yang ada di tepi sungai atau lereng bukit mungkin memainkan peran tambahan di beberapa jaringan, namun hujan kemungkinan merupakan penyebab utama.
Di Mars juga ada ribuan kenampakan di kawah dan dinding lembah yang mirip dengan parit. Parit tersebut biasanya ada di dataran tinggi belahan selatan. Sejumlah penulis menyatakan bahwa proses pembentukannya memerlukan air, kemungkinan dari es yang mencair, namun ada pula yang meyakini bahwa es karbon dioksida dan pergerakan debu kering-lah yang membentuknya. Parit-parit tersebut sangat muda, bahkan mungkin masih aktif hingga sekarang.
Ciri geologis lain, seperti delta dan kipas alluvial, digunakan sebagai dasar untuk mendukung gagasan bahwa Mars pada awalnya lebih hangat dan basah. Keadaan semacam itu memerlukan keberadaan banyak danau di permukaan, dan untuk itu ada bukti-bukti mineralogis, sedimentalogis, dan geomorfologis. Beberapa penulis bahkan menyatakan bahwa pada masa lalu sebagian besar dataran rendah di utara merupakan samudra, meskipun hal ini masih diperdebatkan.
Bukti lebih lanjut bahwa air pernah ada di permukaan Mars muncul dari pelacaktemuan beberapa mineral tertentu seperti hematit dan goetit, yang kadang-kadang terbentuk saat air ada. Beberapa bukti yang sebelumnya diyakini menunjukkan keberadaan cekungan dan aliran air kuno telah ditampik oleh penilikan beresolusi tinggi oleh Mars Reconnaissance Orbiter. Pada tahun 2004, Opportunity melacaktemu mineral jarosit. Mineral ini hanya terbentuk jika ada air berasam, yang menunjukkan bahwa air pernah ada di Mars.
Lapisan es kutub
Mars punya dua lapisan es kutub permanen. Selama musim dingin di salah satu kutub, lapisan tersebut diselubungi oleh kegelapan, sehingga mendinginkan permukaan dan menyebabkan 25-30% atmosfer mengembun menjadi es CO2 (es kering).[55] Saat Matahari kembali menyinari kutub, CO2 yang membeku menyublim, sehingga menghasilkan angin kencang yang menyapu wilayah kutub dengan kecepatan 400 km/jam. Peristiwa musiman tersebut mengangkut banyak debu dan uap air yang menghasilkan embun beku dan awan cirrus besar. Awan es-air dicitrakan oleh Opportunity pada tahun 2004.
Lapisan es Mars terdiri dari es air. Karbon dioksida beku melapisinya dengan ketebalan satu meter di kutub utara pada musim dingin; sementara di kutub selatan, lapisan es kering tersebut bersifat permanen dengan ketebalan delapan meter. Diameter lapisan es kutub utara tercatat sekitar 1.000 kilometer selama musim panas, dan mengandung sekitar 1,6 juta km kubik es. Lapisan es kutub selatan memunyai diameter sekitar 350 km dan ketebalan 3 km. Total volume es di kutub selatan ditambah lapisannya diperkirakan juga sekitar 1,6 juta km kubik. Di kedua lapisan es terdapat lembang-lembang, yang diduga terbentuk oleh pemanasan Matahari, ditambah dengan penyubliman es dan pengembunan uap air.
Pembekuan musiman di beberapa wilayah di dekat lapisan es kutub selatan mengakibatkan pembentukan es kering transparan setebal 1 meter di atas permukaan. Begitu musim semi datang, tekanan dari penyubliman CO2 mengangkat dan memecahkan lapisan tersebut. Akibatnya, terjadi letusan gas CO2 yang bercampur dengan pasir atau debu basalt gelap. Proses ini berlangsung cepat dan tidak biasa dalam geologi Mars. Gas yang bergerak cepat di bawah lapisan ke tempat letusan menghasilkan pola saluran radial yang seperti laba-laba di bawah es.
Geografi
Meskipun dikenang karena memetakan Bulan, Johann Heinrich Mädler dan Wilhelm Beer merupakan para "aerografer" pertama. Mereka merintis bahwa sebagian besar permukaan Mars bersifat permanen, dan menentukan periode rotasi planet. Pada tahun 1840, Mädler memadukan hasil pengamatannya selama sepuluh tahun dan menggambar peta pertama Mars. Daripada memberi nama, Beer dan Mädler menyebut beberapa tempat dengan huruf.
Saat ini, fitur-fitur di Mars dinamai dari berbagai sumber. Fitur albedo dinamai dari mitologi klasik. Nama kawah yang lebih besar dari 60 kilometer (37 mil) berasal dari ilmuwan, penulis, dan tokoh lain yang membantu penelitian Mars. Kawah yang lebih kecil dari 60 km dinamai dari kota dan desa di dunia dengan jumlah penduduk lebih kecil dari 100.000. Lembah besar dinamai dari kata mars atau bintang dalam berbagai bahasa, sementara lembah kecil dari sungai-sungai.
Nama fitur albedo besar tetap dipertahankan, tetapi kadang-kadang diperbaharui untuk melambangkan pengetahuan baru tentang sifat fitur tersebut. Contohnya, Nix Olympica (salju Olympus) diubah menjadi Olympus Mons (Gunung Olympus). Permukaan Mars seperti yang terlihat dari Bumi terbagi menjadi dua macam daerah, dengan albedo yang berbeda. Dataran pucat yang dilapisi debu dan pasir yang kaya akan besi oksida awalnya diduga sebagai 'benua' Mars dan diberi nama seperti Arabia Terra (tanah Arabia) atau Amazonis Planitia (dataran Amazonian). Fitur gelap sebelumnya diduga sebagai laut, sehingga dinamai Mare Erythraeum, Mare Sirenum dan Aurorae Sinus. Fitur gelap terbesar yang dapat terlihat dari Bumi adalah Syrtis Major Planum. Lapisan es kutub utara yang permanen dinamai Planum Boreum, sementara lapisan es kutub selatan disebut Planum Australe.
Khatulistiwa Mars ditetapkan melalui rotasinya, namun letak meridian utamanya ditentukan dengan penetapan titik yang berubah-ubah seperti di Bumi; Mädler dan Beer memilih sebuah garis pada tahun 1830 untuk peta Mars pertama mereka. Setelah wahana Mariner 9 menyajikan citra Mars pada tahun 1972, kawah kecil (nantinya disebut Airy-0) yang terletak di Sinus Meridiani dipilih sebagai tempat bujur 0.0°.
Mars tidak punya samudra sehingga tidak ada 'permukaan laut'. Ketinggian nol harus ditentukan, dan ini disebut areoid Mars, yang sejalan dengan geoid. Ketinggian nol adalah ketinggian yang tekanan atmosfernya 610.5 Pa (6.105 mbar), atau sekitar 0,6% dari tekanan permukaan laut di Bumi (0.006 atm). Tekanan ini sesuai dengan titik tripel air. Praktiknya permukaan ditetapkan secara langsung melalui pengukuran gravitasi satelit.
Atmosfer
Mars kehilangan magnetosfernya 4 miliar tahun yang lalu,[86] sehingga angin surya bisa berhubungan langsung dengan ionosfer, yang mengakibatkan penurunan kepadatan atmosfer dengan mengupas atom-atom dari lapisan luar.[86][87] Dibandingkan dengan Bumi, atmosfer di Mars cukup tipis. Tekanan atmosfer di permukaan berkisar dari 30 Pa di Olympus Mons hingga lebih dari 1.155 Pa di Hellas Planitia, dengan rata-rata tekanan di permukaan 600 Pa. Tekanan permukaan di Mars pada saat terkuatnya sama dengan tekanan yang dapat ditemui di ketinggian 35 km di atas permukaan Bumi. Ketinggian skala atmosfer Mars diperkirakan sekitar 10.8 km, yang lebih tinggi dari Bumi (6 km) karena gravitasi permukaan Mars hanya 38% persen-nya Bumi.
Atmosfer Mars terdiri dari 95% karbon dioksida, 3% nitrogen, 1,6% argon, serta mengandung jejak oksigen dan air. Atmosfernya relatif berdebu dan mengandung partikulat berdiameter 1,5 µm yang memberikan kenampakan kuning kecoklatan di langit Mars saat dilihat dari permukaan.
Metana telah dilacaktemu di atmosfer Mars dengan fraksi mol sekitar 30 ppb.[92][93] Hidrokarbon tersebut muncul dalam plume luas, dan dilepas di wilayah yang berlainan. Di utara pada pertengahan musim panas, plume utama mengandung 19.000 metrik ton metana, dengan kekuatan sumber sekitar 0,6 kilogram per detik.[94][95] Kemungkinan terdapat dua sumber lokal: yang pertama terpusat di dekat 30° U, 260° B, dan yang kedua di dekat 0°, 310° B. Diperkirakan Mars menghasilkan 270 ton metana per tahun.
Rentang waktu kehancuran metana diperkirakan paling lama empat tahun Bumi dan paling pendek 0,6 tahun Bumi. Pergantian cepat ini merupakan tanda-tanda adanya sumber gas aktif di Mars. Aktivitas vulkanik, tubrukan komet, dan keberadaan bentuk kehidupan mikrobial metanogenik diduga merupakan penyebabnya. Metana dapat pula dihasilkan oleh proses non-biologis yang disebut serpentinisasi yang melibatkan air, karbon dioksida, dan mineral olivin.
Iklim
Di antara semua planet di Tata Surya, Mars adalah planet yang musimnya paling mirip dengan Bumi. Hal ini diakibatkan oleh miripnya kemiringan sumbu kedua planet. Panjang musim di Mars itu sekitar dua kalinya Bumi karena jarak Mars yang lebih jauh dari Matahari, sehingga tahun di Mars lebih panjang (dua kalinya Bumi). Suhu permukaan Mars berkisar antara −87 °C (−125 °F) pada musim dingin di kutub hingga −5 °C (23.0 °F) pada musim panas.[31] Luasnya rentang suhu ini diakibatkan oleh ketidakmampuan atmosfer yang tipis untuk menyimpan panas Matahari, tekanan atmosfer yang rendah, dan thermal inertia tanah Mars yang rendah.
Jika Mars punya orbit yang seperti Bumi, musimnya akan mirip dengan Bumi karena sumbu rotasinya mirip dengan Bumi. Eksentrisitas orbit Mars yang relatif besar memberikan pengaruh yang besar. Mars berada di dekat perihelion saat musim panas di belahan selatan dan dingin di utara, dan di dekat aphelion saat musim dingin di belahan selatan adn musim panas di utara. Akibatnya, musim di belahan selatan lebih ekstrem dan musim di utara lebih ringan. Suhu musim panas di selatan lebih hangat 30 °C (54.0 °F) daripada suhu musim panas di utara.
Di Mars juga terdapat badai debu terbesar di Tata Surya. Badai-badai tersebut dapat bervariasi, dari badai di wilayah kecil, hingga badai raksasa yang berkecamuk di seluruh planet. Badai tersebut biasanya terjadi saat Mars berada dekat dengan Matahari. Badai debu ini juga meningkatkan suhu global.
Orbit dan rotasi
Rata-rata jarak Mars dari Matahari diperkirakan sekitar 230 juta km (1,5 SA) dan periode orbitalnya 687 hari (Bumi). Hari Matahari (atau sol) di Mars itu sekitar 24 jam, 39 menit, dan 35,244 detik. Tahun Mars sama dengan 1,8809 tahun Bumi, atau 1 tahun, 320 hari, dan 18,2 jam.
Kemiringan sumbu Mars itu sekitar 25,19 derajat, yang mirip dengan kemiringan sumbu Bumi. Akibatnya musim di Mars mirip dengan Bumi, meskipun lamanya dua kali lipat karena tahunnya lebih lama. Saat ini orientasi kutub utara Mars dekat dengan bintang Deneb. Mars telah melewati perihelionnya pada April 2009 dan aphelionnya Maret2010. Perihelion berikutnya dilewati pada Maret 2011 dan aphelion selanjutnya Februari 2012.
Mars punya eksentrisitas orbit sekitar 0,09; di antara tujuh planet lainnya di Tata Surya, hanya Merkurius yang menunjukkan eksentrisitas yang besar. Pada masa lalu Mars punya orbit yang lebih bundar daripada sekarang. Sekitar 1,35 juta tahun Bumi yang lalu, Mars punya eksentrisitas sekitar 0,002, yang lebih rendah dari Bumi. Siklus eksentrisitas Mars itu sekitar 96.000 tahun Bumi jika dibandingkan dengan siklus 100.000 tahun planet Bumi. Mars juga punya siklus eksentrisitas yang lebih panjang dengan periode 2,2 juta tahun Bumi. Selama 35.000 tahun terakhir orbit Mars menjadi semakin eksentrik karena pengaruh gravitasi planet lain. Jarak terdekat antara Bumi dan Mars akan terus berkurang selama 25.000 tahun berikutnya.
Satelit alami
Mars punya dua satelit alami yang relatif kecil, yaitu Phobos dan Deimos. Penangkapan asteroid merupakan hipotesis yang didukung, namun asal usul satelit-satelit tersebut masih belum pasti.[107] Kedua satelit ditemukan pada tahun 1877 oleh Asaph Hall, dan dinamai dari tokoh Phobos (panik/ketakutan) dan Deimos (teror) yang, dalam mitologi Yunani, menemani ayah mereka Ares dalam pertempuran. Ares juga dikenal sebagai Mars oleh orang Romawi.
Dari permukaan Mars, pergerakan Phobos dan Deimos tampak sangat berbeda dari Bulan di Bumi. Phobos terbit di barat, tenggelam di timur, dan terbit lagi dalam waktu 11 jam. Deimos, yang berada di luar orbit sinkron-yang membuat periode orbitalnya sama dengan periode rotasi planet-terbit di timur namun sangat pelan. Meskipun periode orbital Deimos itu 30 jam, satelit tersebut butuh 2,7 hari untuk tenggelam di Barat.
Orbit Phobos berada di bawah ketinggian sinkron, sehingga gaya pasang surut dari planet Mars secara bertahap merendahkan orbitnya. Dalam waktu 50 juta tahun satelit tersebut akan menabrak permukaan Mars atau pecah menjadi struktir cincin yang mengitari planet.
Asal usul kedua satelit tersebut tidak banyak diketahui. Albedo yang rendah dan komposisi kondrit karbon di kedua satelit tersebut dianggap mirip dengan asteroid, sehingga mendukung hipotesis penangkapan. Orbit Phobos yang tidak stabil menunjukkan penangkapan yang baru saja terjadi. Akan tetapi keduanya memunyai orbit bundar dan sangat dekat dengan khatulistiwa; hal-hal tersebut tidak biasa untuk objek yang ditangkap dan dinamika penangkapan yang diperlukan untuk itu kompleks. Pertumbuhan pada awal sejarah Mars juga mungkin, namun hipotesis tersebut tidak menjelaskan komposisi yang lebih mirip dengan asteroid daripada Mars sendiri.
Kemungkinan ketiga adalah keterlibatan objek ketiga atau semacam tubrukan. Bukti terbaru menunjukkan Phobos memunyai bagian dalam yang berpori. Selain itu, komposisinya terdiri dari filosilikat dan mineral lain yang diketahui berasal dari Mars. Bukti-bukti ini mendukung hipotesis bahwa Phobos terbentuk dari materi yang berasal dari tubrukan di Mars, yang mirip dengan hipotesis mengenai asal usul Bulan. Meski spektra VNIR satelit-satelit Mars mirip dengan asteroid, spektra inframerah thermal Phobos dilaporkan tidak konsisten dengan kondrit dari kelompok manapun.

Kehidupan
Berdasarkan pemahaman keterhunian planet, planet-planet yang punya air di permukaan merupakan planet yang layak huni. Untuk mencapai hal tersebut, orbit suatu planet harus berada di dalam zona layak huni. Di Tata Surya, zona tersebut terbentang dari setelah Venus hingga poros semi-mayor Mars. Selama perihelion Mars masuk ke wilayah ini, namun atmosfer tipisnya mencegah air bertahan untuk waktu yang lama. Bekas aliran air pada masa lalu menunjukkan potensi keterhunian Mars. Beberapa bukti terbaru memunculkan gagasan bahwa air di permukaan Mars akan terlalu berasam dan bergaram, sehingga sulit mendukung kehidupan.
Kurangnya magnetosfer dan tipisnya atmosfer Mars merupakan tantangan. Di permukaan planet ini tidak banyak terjadi pemindahan panas. Penyekatan terhadap angin surya rendah, sementara tekanan atmosfer Mars tidak cukup untuk mempertahankan air dalam bentuk cair. Planet ini juga hampir, atau bahkan sepenuhnya, mati secara geologis; berakhirnya kegiatan vulkanik menyebabkan berhentinya pendaurulangan bahan kimia dan mineral antara permukaan dengan bagian dalam planet.
Bukti menunjukkan bahwa planet ini dahulu lebih layak huni daripada sekarang, namun masih belum diketahui apakah organisme hidup pernah ada atau tidak. Wahana Viking pada pertengahan tahun 1970an membawa percobaan yang dirancang untuk melacaktemu mikroorganisme di tanah Mars. Percobaan tersebut membuahkan hasil yang positif, termasuk peningkatan sementara CO2 pada saat pemaparan dengan air dan nutrien. Tanda-tanda kehidupan masih dipertentangkan oleh beberapa ilmuwan. Ilmuwan NASA Gilbert Levin menegaskan bahwa Viking telah menemukan kehidupan. Analisis ulang data Viking telah menunjukkan bahwa percobaan Viking tidak cukup mutakhir untuk melacaktemu kehidupan. Percobaan tersebut bahkan bisa membunuh kehidupan. Percobaan yang dilakukan oleh wahana Phoenix menunjukkan bahwa tanah Mars punya pH yang sangat basa, serta mengandung magnesium, sodium, potasium, dan klorida. Nutrien tanah bisa mendukung kehidupan, namun kehidupan masih harus dilindungi dari sinar ultraviolet.
Di laboratorium Johnson Space Center, bentuk-bentuk yang luar biasa telah ditemukan di meteorit Mars ALH84001. Beberapa ilmuwan mengusulkan bahwa bentuk geometrik tersebut mungkin merupakan mikroba Mars yang telah terfosilisasi sebelum meteorit itu terlempar ke angkasa akibat tubrukan meteor 15 juta tahun yang lalu. Asal usul anorganik bentuk-bentuk tersebut juga telah diusulkan.
Metana dan formaldehida yang baru saja dilacaktemu oleh pengorbit Mars diklaim sebagai tanda-tanda kehidupan, karena senyawa kimia tersebut akan segera hilang di atmosfer Mars.[122][123] Ada kemungkinan bahwa senyawa tersebut dihasilkan oleh aktivitas vulkanis dan geologis, seperti serpentinisasi.

Sumber : http://id.wikipedia.org/wiki/Mars

Yupiter
Yupiter atau Jupiter adalah planet terdekat kelima dari matahari setelah Merkurius, Venus, Bumi dan Mars.
Jarak rata-rata antara Yupiter dan Matahari adalah 778,3 juta km. Jupiter adalah planet terbesar dan terberat dengan diameter 149.980 km dan memiliki massa 318 kali massa bumi. Periode rotasi planet ini adalah 9 jam 55 menit, sedangkan periode revolusi adalah 11,86 tahun.
Di permukaan
planet ini terdapat bintik merah raksasa yang disebut Badai Besar Abadi. Atmosfer Yupiter mengandung hidrogen (H), helium (He), metana (CH4) dan amonia (NH3). Lapisan atas atmosfer Yupiter terdiri dari 88 - 92% hidrogen dan 8 - 12% helium. Suhu di permukaan planet ini berkisar dari -140oC sampai dengan 21oC. Seperti planet lain, Yupiter tersusun atas unsur besi dan unsur berat lainnya. Jupiter memiliki 68 satelit, di antaranya Io, Europa, Ganymede, Callisto (Galilean moons).
Cincin Yupiter
Yupiter memiliki cincin yang sangat tipis ,berwarna hampir sama dengan atmosfernya dan sedikit memantulkan cahaya matahari. Cincin Yupiter terbentuk atas materi yang gelap kemerah-merahan. Materi pembentuknya bukanlah dari es seperti Saturnus melainkan ialah batuan dan pecahan-pecahan debu. Setelah diteliti, cincin Yupiter merupakan hasil dari gagal terbentuknya satelit Yupiter.Cincin yupiter sangat besar.
Ringkasan
Yupiter biasanya menjadi objek tercerah keempat di langit (setelah matahari, bulan dan Venus); namun pada saat tertentu Mars terlihat lebih cerah daripada Yupiter.

Sumber : http://id.wikipedia.org/wiki/Yupiter

Saturnus
Saturnus adalah sebuah planet di tata surya yang dikenal juga sebagai planet bercincin, dan merupakan planet terbesar kedua di tata surya setelah Jupiter. Jarak Saturnus sangat jauh dari Matahari, karena itulah Saturnus tampak tidak terlalu jelas dari Bumi. Saturnus berevolusi dalam waktu 29,46 tahun. Setiap 378 hari, Bumi, Saturnus dan Matahari akan berada dalam satu garis lurus. Selain
berevolusi, Saturnus juga berotasi dalam waktu yang sangat singkat, yaitu 10 jam 40 menit 24 detik.
Saturnus memiliki kerapatan yang rendah karena sebagian besar zat penyusunnya berupa gas dan cairan. Inti Saturnus diperkirakan terdiri dari batuan padat dengan atmosfer tersusun atas gas amonia dan metana, hal ini tidak memungkinkan adanya kehidupan di Saturnus.
Cincin Saturnus sangat unik, terdiri beribu-ribu cincin yang mengelilingi planet ini. Bahan pembentuk cincin ini masih belum diketahui. Para ilmuwan berpendapat, cincin itu tidak mungkin terbuat dari lempengan padat karena akan hancur oleh gaya sentrifugal. Namun, tidak mungkin juga terbuat dari zat cair karena gaya sentrifugal akan mengakibatkan timbulnya gelombang. Jadi, sejauh ini, diperkirakan yang paling mungkin membentuk cincin-cincin itu adalah bongkahan-bongkahan es meteorit. Cincin ini terentang dari 6.630 km - 120.700 km di atas atmosfer Saturnus.
Hingga 2006, Saturnus diketahui memiliki 56 buah satelit alami. Tujuh di antaranya cukup masif untuk dapat runtuh berbentuk bola di bawah gaya gravitasinya sendiri. Mereka adalah Mimas, Enceladus, Tethys, Dione, Rhea, Titan (Satelit terbesar dengan ukuran lebih besar dari planet Merkurius) dan Iapetus.
Bentuk fisik
Saturnus memiliki bentuk yang diratakan di kutub dan dibengkakkan keluar disekitar khatulistiwa. Diameter khatulistiwa Saturnus sebesar 120.536 km (74.867 mil) dimana diameter dari Kutub Utara ke Kutub Selatan sebesar 108.728 km (67.535 mil), berbeda sebesar 9%. Bentuk yang diratakan ini disebabkan oleh rotasinya yang sangat cepat, merotasi setiap 10 jam 14 menit waktu Bumi. Saturnus adalah satu-satunya Planet di tata surya yang massa jenisnya lebih sedikit daripada air. Walaupun inti Saturnus memiliki massa jenis yang lebih besar daripada air, planet ini memiliki atmosfer yang mengandung gas, sehingga massa jenis relatif planet ini sebesar is 0.69 g/cm³ (lebih sedikit daripada air), sebagai hasilnya, jika Saturnus diletakan di atas kolam yang penuh air, Saturnus akan mengapung.
Atmosfer
Komposisi
Bagian luar atmosfer Saturnus terbuat dari 96.7% hidrogen dan 3% helium, 0.2% metana dan 0.02% amonia. Pada atmosfer Saturnus juga terdapat sedikit kandungan asetilena, etana dan fosfin.
Awan
Awan Saturnus, seperti halnya Yupiter, merotasi dengan kecepatan yang berbeda-beda bergantung dari posisi lintangnya. Tidak seperti Yupiter, awan Saturnus lebih redup dan awan Saturnus lebih lebar di khatulistiwa. Awan terendah Saturnus dibuat oleh air es dan dengan ketebalan sekitar 10 kilometer. Temperatur Saturnus cukup rendah, dengan suhu 250 K (-10°F, -23°C). Awan di atasnya, memiliki ketebalan 50 kilometer, terbuat dari es amonium hidrogensulfida (simbol kimia: NH4HS) dan di atas awan tersebut terdapat awan es amonia dengan ketebalan 80 kilometer. Bagian teratas dibuat dari gas hidrogen dan helium, dimana tebalnya sekitar 200 dan 270 kilometer. Aurora juga diketahui terbentuk di mesosfer Saturnus.[10] Temperatur di awan bagian atas Saturnus sangat rendah, yaitu sebesar 98 K (-283 °F, -175 °C). Temperatur di awan bagian dalam Saturnus lebih besar daripada yang diluar karena panas yang diproduksi di bagian dalam Saturn. Angin Saturnus merupakan salah satu dari angin terkencang di Tata Surya, mencapai kecepatan 500 m/s (1.800 km/h, 1.118 mph), yang jauh lebih cepat daripada angin yang ada di Bumi.
Pada Atmosfer Saturnus juga terdapat awan berbentuk lonjong yang mirip dengan awan berbentuk lonjong yang lebih jelas yang ada di Yupiter. Titik lonjong ini adalah badai besar, mirip dengan angin taufan yang ada di Bumi. Pada tahun 1990, Teleskop Hubble mendeteksi awan putih didekat khatulistiwa Saturnus. Badai seperti tahun 1990 diketahui dengan nama Bintik Putih Raksasa, badai unik Saturnus yang hanya ada dalam waktu yang pendek dan muncul setiap 30 tahun waktu Bumi. Bintik Putih Raksasa juga ditemukan tahun 1876, 1903, 1933 dan tahun 1960. Jika lingkaran konstan ini berlanjut, diprediksi bahwa pada tahun 2020 bintik putih besar akan terbentuk kembali.
Pesawat angkasa Voyager 1 mendeteksi awan heksagonal didekat kutub utara Saturnus sekitar bujur 78° utara. Cassini-Huygens nantinya mengkonfirmasi hal ini tahun 2006. Tidak seperti kutub utara, kutub selatan tidak menunjukan bentuk awan heksagonal dan yang menarik, Cassini menemukan badai mirip dengan siklon tropis terkunci di kutub selatan dengan dinding mata yang jelas. Penemuan ini mendapat catatan karena tidak ada planet lain kecuali Bumi di tata surya yang memiliki dinding mata.
Inti Planet
Inti Planet Saturnus mirip dengan Yupiter. Planet ini memiliki inti planet di pusatnya dan sangat panas, temperaturnya mencapai 15.000 K (26.540 °F, 14.730 °C). Inti Planet Saturnus sangat panas dan inti planet ini meradiasi sekitar 21/2 kali lebih panas daripada jumlah energi yang diterima Saturnus dari Matahari. Inti Planet Saturnus sama besarnya dengan Bumi, namun jumlah massa jenisnya lebih besar. Diatas inti Saturnus terdapat bagian yang lebih tipis yang merupakan hidrogen metalik, sekitar 30.000 km (18.600 mil). Diatas bagian tersebut terdapat daerah liquid hidrogen dan helium. Inti planet Saturnus berat, dengan massa sekitar 9 sampai 22 kali lebih dari massa inti Bumi.
Medan gaya
Saturnus memiliki medan gaya alami yang lebih lemah dari Yupiter. Medan gaya Saturnus unik karena porosnya simetrikal, tidak seperti planet lainnya. Saturnus menghasilkan gelombang radio, namun mereka terlalu lemah untuk dideteksi dari Bumi. satelit dari Saturnus, Titan mengorbit di bagian luar medan gaya Saturnus dan memberikan keluar plasma terhadap daerah dari partikel dari atmosfer Titan yang yang diionisasi.
Rotasi dan orbit
Jarak antara Matahari dan Saturnus lebih dari 1.4 milyar km, sekitar 9 kali jarak antara Bumi dan Matahari. Perlu 29,46 tahun Bumi untuk Saturnus untuk mengorbit Matahari yang diketahui dengan nama periode orbit Saturnus. Saturnus memiliki periode rotasi selama 10 jam 40 menit 24 detik waktu Bumi. Namun, Saturnus tidak merotasi dalam rata-rata yang konstan. Periode rotasi Saturnus tergantung dengan kecepatan rotasi gelombang radio yang dikeluarkan oleh Saturnus. Pesawat angkasa Cassini-Huygens menemukan bahwa emisi radio melambat dan periode rotasi Saturnus meningkat. Tidak diketahui hal apa yang menyebabkan gelombang radio melambat.
Cincin Saturnus
Saturnus terkenal karena cincin di planetnya, yang menjadikannya sebagai salah satu obyek dapat dilihat yang paling menakjubkan dalam sistem tata surya.
Sejarah
Cincin itu pertama sekali dilihat oleh Galileo Galilei pada tahun 1610 dengan teleskopnya, tetapi dia tidak dapat memastikannya. Dia kemudian menulis kepada adipati Toscana bahwa "Saturnus tidak sendirian, tetapi terdiri dari tiga yang hampir bersentuhan dan tidak bergerak. Cincin itu tersusun dalam garis sejajar dengan zodiak dan yang di tengah (Saturnus) adalah tiga kali besar yang lurus (penjuru cincin)". Dia juga mengira bahwa Saturnus memiliki "telinga." Pada tahun 1612 sudut cincin menghadap tepat pada bumi dan cincin tersebut akhirnya hilang dan kemudian pada tahun 1613 cincin itu muncul kembali, yang membuat Galileo bingung.
Persoalan cincin itu tidak dapat diselesaikan sehingga 1655 oleh Christian Huygens, yang menggunakan teleskop yang lebih kuat daripada teleskop yang digunakan Galileo.
Pada tahun 1675 Giovanni Domenico Cassini menentukan bahwa cincin Saturnus sebenarnya terdiri dari berbagai cincin yang lebih kecil dengan ruang antara mereka, bagian terbesar dinamakan Divisi Cassini.
Pada tahun 1859, James Clerk Maxwell menunjukan bahwa cincin tersebut tidak padat, namun terbuat dari partikel-partikel kecil, yang mengorbit Saturnus sendiri-sendiri dan jika tidak, cincin itu akan tidak stabil atau terpisah.[18] James Keeler mempelajari cincin itu menggunakan spektrometer tahun 1895 yang membuktikan bahwa teori Maxwell benar.
Bentuk fisik cincin Saturnus
Cincin Saturnus tersebut dapat dilihat dengan menggunakan teleskop modern berkekuatan sederhana atau dengan teropong berkekuatan tinggi. Cincin ini menjulur 6.630 km hingga 120.700 km atas khatulistiwa Saturnus dan terdiri daripada bebatuan silikon dioksida, oksida besi dan partikel es dan batu. Terdapat dua teori mengenai asal cincin Saturnus. Teori pertama diusulkan oleh Édouard Roche pada abad ke-19, adalah cincin tersebut merupakan bekas satelit Saturnus yang orbitnya datang cukup dekat dengan Saturnus sehingga pecah akibat kekuatan pasang surut. Variasi teori ini adalah satelit tersebut pecah akibat hantaman dari komet atau asteroid. Teori kedua adalah cincin tersebut bukanlah dari satelit Saturnus, tetapi ditinggalkan dari nebula asal yang membentuk Saturnus. Teori ini tidak diterima masa kini disebabkan cincin Saturnus dianggap tidak stabil melewati periode selama jutaan tahun dan dengan itu dianggap baru terbentuk.
Sementara ruang terluas di cincin, seperti Divisi Cassini dan Divisi Encke, dapat dilihat dari Bumi, Voyagers mendapati cincin tersebut mempunyai struktur seni yang terdiri dari ribuan bagian kecil dan cincin kecil. Struktur ini dipercayai terbentuk akibat tarikan graviti satelit-satelit Saturnus melalui berbagai cara. Sebagian bagian dihasilkan akibat satelit kecil yang lewat seperti Pan dan banyak lagi bagian yang belum ditemukan, sementara sebagian cincin kecil ditahan oleh medan gravitas satelit penggembala kecil seperti Prometheus dan Pandora. Bagian lain terbentuk akibat resonansi antara periode orbit dari partikel di beberapa bagian dan bahwa satelit yang lebih besar yang terletak lebih jauh, pada Mimas terdapat divisi Cassini melalui cara ini, justru lebih berstruktur dalam cincin sebenarnya terdiri dari gelombang berputar yang dihasilkan oleh gangguan gravitas satelit secara berkala.
Jari-jari
Voyager menemukan suatu bentuk seperti ikan pari di cincin Saturnus yang disebut jari-jari. Jari-jari tersebut terlihat saat gelap ketika disinari sinar Matahari dan terlihat terang ketika ada dalam sisi yang tidak diterangi sinar Matahari. Diperkirakan bahwa jari-jari tersebut adalah debu yang sangat kecil sekali yang naik keatas cincin. Debu itu merotasi dalam waktu yang sama dengan magnetosfer planet tersebut dan diperkirakan bahwa debu itu memiliki koneksi dengan elektromagnetisme. Namun, alasan utama mengapa jari-jari itu ada masih tidak diketahui.
Cassini menemukan jari-jari tersebut 25 tahun kemudian. Jari-jari tersebut muncul dalam fenomena musiman, menghilang selama titik balik Matahari.
Satelit alami
Saturnus memiliki 59 satelit alami, 48 di antaranya memiliki nama. Banyak satelit Saturnus yang sangat kecil, dimana 33 dari 50 satelit memiliki diameter lebih kecil dari 10 kilometer dan 13 satelit lainnya memiliki diameter lebih kecil dari 50 km.[19] 7 satelit lainnya cukup besar untuk, dimana satelit tersebut adalah Titan, Rhea, Iapetus, Dione, Tethys, Enceladus dan Mimas. Titan adalah satelit terbesar, lebih besar dari planet Merkurius dan satu-satunya satelit di atmosfer yang memiliki atmosfer yang tebal. Hyperion dan Phoebe adalah satelit terbesar lainnya, dengan diameter lebih besar dari 200 km.
Di Titan, satelit terbesar Saturnus, satelit Desember tahun 2004 dan satelit Januari tahun 2005 banyak foto Titan diambil oleh Cassini-Huygens. 1 bagian dari satelit ini, yaitu Huygens mendarat di Titan.

Sumber : http://id.wikipedia.org/wiki/Saturnus

Uranus
Uranus adalah planet ketujuh dari Matahari dan planet yang terbesar ketiga dan terberat keempat dalam Tata Surya. Ia dinamai dari nama dewa langit Yunani kuno Uranus (Οὐρανός) ayah dari Kronos (Saturnus) dan kakek dari Zeus (Jupiter). Meskipun Uranus terlihat dengan mata telanjang seperti lima planet klasik, ia tidak pernah dikenali sebagai planet oleh pengamat dahulu kala karena redupnya d
an orbitnya yang lambat. Sir William Herschel mengumumkan penemuannya pada tanggal 13 Maret 1781, menambah batas yang diketahui dari Tata Surya untuk pertama kalinya dalam sejarah modern. Uranus juga merupakan planet pertama yang ditemukan dengan menggunakan teleskop.
Uranus komposisinya sama dengan Neptunus dan keduanya mempunyai komposisi yang berbeda dari raksasa gas yang lebih besar, Jupiter dan Saturn. Karenanya, para astronom kadang-kadang menempatkannya dalam kategori yang berbeda, "raksasa es". Atmosfer Uranus, yang sama dengan Jupiter dan Saturnus karena terutama terdiri dari hidrogen dan helium, mengandung banyak "es" seperti air, amonia dan metana, bersama dengan jejak hidrokarbon. Atmosfernya itu adalah atmofer yang terdingin dalam Tata Surya, dengan suhu terendah 49 K (−224 °C). Atmosfer planet itu punya struktur awan berlapis-lapis dan kompleks dan dianggap bahwa awan terendah terdiri atas air dan lapisan awan teratas diperkirakan terdiri dari metana. Kontras dengan itu, interior Uranus terutama terdiri atas es dan bebatuan.
Seperti planet raksasa lain, Uranus mempunyai sistem cincin, magnetosfer serta banyak satelit alami. Sistem Uranian konfigurasinya unik di antara planet-planet karena sumbu rotasi miring ke sampingnya, hampir pada bidang revolusinya mengelilingi Matahari. Sehingga, kutub utara dan selatannya terletak pada tempat yang pada banyak planet lain merupakan ekuator mereka. Dilihat dari Bumi, cincin Uranus kadang nampak melingkari planet itu seperti sasaran panah dan satelit-satelitnya mengelilinginya seperti jarum-jarum jam, meskipun pada tahun 2007 dan 2008 cincin itu terlihat dari tepi. Tahun 1986, gambar dari Voyager 2 menunjukkan Uranus sebagai planet yang nampak tidak berfitur pada cahaya tampak tanpa pita awan atau badai yang diasosiasikan dengan raksasa lain. Akan tetapi, pengamat di Bumi melihat tanda-tanda perubahan musim dan aktivitas cuaca yang meningkat pada tahun-tahun belakangan bersamaan dengan Uranus mendekati ekuinoksnya. Kecepatan angin di planet Uranus dapat mencapai 250 meter per detik (900 km/jam, 560 mil per jam).
Penemuan
Uranus telah diamati pada banyak kesempatan sebelum penemuannya sebagai planet, namun ia dianggap secara salah sebagai bintang. Pengamatan yang tercatat paling awal adalah pada tahun 1690 saat John Flamsteed mengamati planet itu sedikitnya enam kali, mengkatalogkannya sebagai 34 Tauri. Astronom Perancis, Pierre Lemonnier, mengamati Uranus setidaknya dua puluh kali antara tahun 1750 dan 1769, termasuk pada empat malam berturut-turut.
Sir William Herschel mengamati planet itu pada 13 Maret 1781 saat berada di taman di rumahnya di 19 New King Street di kota Bath, Somerset (sekarang Herschel Museum of Astronomy), namun mulanya melaporkannya (pada 26 April 1781) sebagai sebuah "komet". Herschel "melakukan serangkaian pengamatan terhadap paralaks pada bintang-bintang yang tetap", menggunakan teleskop yang ia desain sendiri.
Dia mencatat dalam jurnalnya "Pada kuartil dekat ζ Tauri … bisa merupakan bintang Nebula atau sebuah komet". Tanggal 17 Maret, dia mencatat, "Aku mencari Komet atau Bintang Nebula itu dan menemukan bahwa ia adalah sebuah Komet, karena ia berubah letaknya". Saat dia mempresentasikan penemuannya pada Royal Society, ia terus menegaskan bahwa dia telah menemukan sebuah komet sementara secara implisit membandingkannya pada planet:
“Daya yang aku miliki saat pertama kali Aku melihat komet itu adalah 227. Dari pengamatan Aku tahu bahwa diameter dari bintang-bintang diam tidak secara proporsional membesar dengan daya yang lebih besar, sebagaimana planet; oleh karena itu sekarang Aku menyetel dayanya pada 460 dan 932 dan menemukan bahwa diameter komet itu naik sebanding dengan dayanya, sebagaimana mestinya, dengan perkiraan bahwa ia bukan bintang diam, sementara diameter bintang-bintang yang Aku bandingkan dengannya tidak meningkat dengan rasio yang sama. Lebih dari itu, komet itu diperbesar jauh di luar apa yang mestinya akan terjadi pada cahayanya, nampak kabur dan kurang-jelas dengan kekuatan yang besar ini, sementara bintang-bintang itu mempertahankan kilau dan kekhasannya dari ribuan pengamatan aku tahu mereka akan mempertahankannya. Kelanjutannya menunjukkan bahwa dugaanku berdasar baik, ini terbukti adalah Komet yang belakangan ini kami amati.”
Herschel memberitahu Astronomer Royal, Nevil Maskelyne, akan penemuannya dan menerima jawaban keheranan ini darinya pada tanggal 23 April 23: "Aku tidak tahu menyebutnya apa. Mungkin ia planet reguler yang bergerak pada orbit yang hampir melingkar pada Matahari karena Komet bergerak pada elips yang sangat eksentrik. Aku belum melihat koma atau ekor apapun padanya".
Sementara Herschel secara hati-hati terus menggambarkan objek baru ini sebagai sebuah komet, para astronom lain sudah mulai menduga secara lain. Astronom Rusia Anders Johan Lexell memperkirakan jaraknya 18 kali jarak Matahari dari Bumi dan belum satu kometpun yang diamati dengan perihelion empat kali jarak Bumi-Matahari. Astronom Berlin Johann Elert Bode mendeskripsikan penemuan Herschel sebagai "bintang bergerak yang dapat dianggap hingga sekarang ini objek tak diketahui mirip planet yang berkeliling di luar orbit Saturnus". Bode menyimpulkan bahwa orbitnya yang hampir berbentuk lingkaran lebih mirip sebuah planet daripada komet.
Objek itu dengan segera diterima secara universal sebagai sebuah planet. Tahun 1783, Herschel sendiri mengakui fakta ini kepada direktur Royal Society Joseph Banks: "Dengan pengamatan dari para Astronom paling terkenal di Eropa nampaknya bintang baru itu, yang membuatku dihormati karena kutunjukkan kepada mereka pada Maret 1781, adalah sebuah Planet Primer pada Tata Surya kita." Untuk mengakui pencapaian ini, Raja George III memberi Herschel gaji tetap tahunan £200 dengan syarat ia pindah ke Windsor sehingga Keluarga Kerajaan mendapat kesempatan untuk melihat melalui teleskopnya.
Penamaan
Maskelyne meminta Herschel untuk "do the astronomical world the faver [tertulis demikian, 'membantu dunia astronomi'] untuk memberi nama planetmu, yang sepenuhnya milikmu, & yang kami merasa berhutang budi padamu atas penemuannya." Untuk menjawab permintaan Maskelyne, Herschel memutuskan untuk menamai objek itu Georgium Sidus (Bintangnya George), atau "Planet Georgian" untuk menghormati penyokong dirinya yang baru, Raja George III. Dia menjelaskan keputusan ini dalam sebuah surat kepada Joseph Banks:
Pada masa dahulu kala sebutan Merkurius, Venus, Mars, Jupiter dan Saturnus diberikan kepada planet-planet tersebut, sebagai nama pahlawan dan dewa mereka. Pada masa sekarang yang eranya lebih filosofis sulit memungkinkan untuk mendapat pengganti metode yang sama dan menyebutnya Juno, Pallas, Apollo atau Minerva, untuk menjadi nama bagi benda langit kita yang baru. Pertimbangan pertama berupa peristiwa tertentu, atau kejadian luar biasa, nampaknya merupakan kronologinya: jika pada masa depan akan ditanyakan, kapan Planet yang terakhir-ditemukan ini ditemukan? Akan menjadi jawaban yang sangat memuaskan mengatakan, 'Pada masa pemerintahan Raja George Ketiga.
Nama yang diusulkan Herschel tidak populer di luar Britania dan beberapa alternatif segera diusulkan. Astronom Jérôme Lalande mengusulkan planet itu dinamai Herschel untuk menghormati penemunya.[32] Namun, Bode, memilih Uranus, versi Latin dewa langit Yunani, Ouranos. Bode berargumen bahwa seperti Saturnus yang merupakan ayah dari Jupiter, planet baru itu mesti diberi nama dari nama ayah Saturnus. Pada tahun 1789, kolega Bode dari Royal Academy, Martin Klaproth menamai unsur yang baru ditemukan dengan "uranium" untuk mendukung pilihan Bode. Pada akhirnya, saran Bode menjadi yang paling luas digunakan dan menjadi universal pada 1850 saat HM Nautical Almanac Office, yang terakhir yang tidak menggunakannya, beralih dari menggunakan Georgium Sidus kepada Uranus.
Tata nama
Pengucapan nama Uranus dalam bahasa Inggris yang disukai di antara para astronom adalah /ˈjʊərənəs/, dengan tekanan pada suku kata pertama seperti dalam bahasa Latin Ūranus; kontras dengan bahasa sehari-hari /jʊˈreɪnəs/, dengan tekanan pada suku kata kedua dan a panjang, meskipun dua-duanya dianggap dapat diterima. Karena pada daerah yang berbahasa Inggris, ū•rā′•nəs kedengaran seperti "your anus" ('anusmu'), ejaan sebelumnya juga menyembunyikan malu: seperti yang Dr. Pamela Gay, astronom di Southern Illinois University, sebutkan dalam siarannya, untuk menghindari "dikerjai oleh anak kecil sekolahan ... saat ragu-ragu, jangan menekankan apapun dan hanya katakan ūr′•ə•nəs. Dan merekapun lari dengan cepat."
Uranus merupakan satu-satunya planet yang namanya berasal dari tokoh dari mitologi Yunani bukan dari mitologi Romawi. Adjektif dari Uranus adalah "Uranian". Simbol astronomisnya adalah . Simbol itu merupakan gabungan dari simbol untuk Mars dan Matahari karena Uranus adalah Langit dalam mitologi Yunani, yang dianggap didominasi oleh gabungan kekuatan Matahari dan Mars.[38] Simbol astrologisnya adalah , disarankan oleh Lalande tahun 1784. Dalam sebuah surat kepada Herschel, Lalande mendeskripsikannya sebagai "un globe surmonté par la première lettre de votre nom" ("sebuah globe yang diatasnya adalah huruf pertama namamu").[ Dalam bahasa Cina, Jepang, Korea dan Vietnam, nama planet Uranus secara literal dialihbahasakan sebagai bintang raja langit .
Orbit dan rotasi
Uranus mengitari Matahari sekali dalam 84 tahun. Jarak rata-ratanya dari Matahari kira-kira 3 milyar km (sekitar 20 SA). Intensitas sinar Matahari di Uranus sekitar 1/400 yang ada di Bumi. Elemen orbitnya dihitung pertama kali tahun 1783 oleh Pierre-Simon Laplace. Dengan berjalannya waktu, perbedaan mulai terlihat antara orbit yang diprediksikan dan yang diamati dan pada tahun 1841, John Couch Adams pertama kali mengajukan bahwa perbedaan itu mungkin disebabkan sentakan gravitasi oleh sebuah planet yang tidak terlihat. Pada tahun 1845, Urbain Le Verrier mulai riset mandirinya sendiri tentang orbit Uranus. Pada 23 September 1846, Johann Gottfried Galle menemukan lokasi satu planet baru, yang kemudian diberinama Neptunus, hampir pada posisi yang diprediksikan oleh Le Verrier.
Periode rotasi interior Uranus adalah 17 jam, 14 menit. Akan tetapi, seperti semua raksasa gas lainnya, atmosfer atasnya mengalami angin badai yang sangat kuat pada arah rotasi. Akibatnya, pada beberapa garis lintang, seperti dua per tiga lintang dari khatulistiwa ke kutub selatan, fitur-fitur atmosfer itu yang nampak bergerak jauh lebih cepat, menjadikan rotasi penuhnya sekecil 14 jam.
Kemiringan sumbu
Sumbu rotasi Uranus terletak pada sisinya dipandang dari bidang Tata Surya, dengan kemiringan sumbu 97,77°. Ini memberinya perubahan musim yang sama sekali tidak seperti planet utama lain. Planet-planet lain dapat dibayangkan sebagai gasing yang berputar termiring-miring relatif terhadap bidang tata surya, sementara Uranus berotasi lebih seperti bola yang menggelinding termiring-miring. Berdekatan dengan waktu solstis Uranian, satu kutubnya menghadap Matahari terus-menerus sedangkan kutub lainnya menghadap ke arah sebaliknya. Hanya segaris daerah sempit di sekitar ekuator yang mengalami pergantian siang-malam dengan cepat, namun dengan Matahari sangat rendah dari kaki langit seperti di daerah kutub di Bumi. Pada sisi orbit Uranus yang lain orientasi kutub-kutubnya terhadap Matahari adalah sebaliknya. Tiap kutub terus-menerus disinari Matahari sekitar 42 tahun, diikuti dengan 42 tahun yang gelap. Dekat waktu ekuinoks, Matahari menghadap ekuator Uranus memberi periode pergantian siang-malam sama seperti yang terlihat pada kebanyakan planet lain. Uranus mencapai ekuinoks terkininya pada tanggal 7 December 2007.
Belahan Utara = Tahun = Belahan Selatan
Solstis Musim Dingin = 1902, 1986 = Solstis Musim Panas
Ekuinoks Musim Semi = 1923, 2007 = Ekuinoks Musim Gugur
Solstis Musim Panas = 1944, 2028 = Solstis Musim Dingin
Ekuinoks Musim Gugur = 1965, 2049 = Ekuinoks Musim Semi

Salah satu akibat orientasi sumbu rotasi ini adalah bahwa, rata-rata dalam satu tahun, daerah kutub menerima masukan energi yang lebih besar dari Matahari daripada daerah ekuatornya. Namun demikian, Uranus lebih panas ekuatornya daripada kutubnya. Mekanisme yang mendasari yang menyebabkan hal ini tidak diketahui. Alasan tidak biasanya kemiringan sumbu Uranus juga tidak diketahui pasti, namun perkiraan umum adalah bahwa selama pembentukan Tata Surya, protoplanet seukuran Bumi bertubrukan dengan Uranus, menyebabkan orientasinya yang miring tersebut. Kutub selatan Uranus menunjuk hampir kepada Matahari saat terbang dekat Voyager 2 tahun 1986. Penyebutan kutub ini sebagai "selatan" menggunakan definisi yang sekarang disetujui oleh Persatuan Astronomi Internasional, yaitu bahwa kutub utara suatu planet atau satelit adalah kutub yang menunjuk ke atas bidang invariabel Tata Surya, kemanapun arah planet itu berputar. Akan tetapi, perjanjian yang berbeda kadang digunakan, di mana kutub utara dan selatan suatu benda didefinisikan menurut aturan tangan kanan sehubungan dengan arah rotasi. Menurut sistem koordinat yang belakangan ini, kutub utara Uranus adalah yang disinari Matahari pada tahun 1986.
Kecemerlangan
Dari tahun 1995 sampai 2006, magnitudo tampak Uranus berfluktuasi antara +5,6 dan +5,9; menempatkannya hampir pada batas daya lihat mata telanjang pada +6.5. Diameter angularnya antara 3,4 dan 3,7 detik busur, dibandingkan dengan 16 hingga 20 detik busur untuk Saturnus dan 32 sampai 45 detik busur untuk Jupiter. Saat oposisi, Uranus terlihat dengan mata telanjang dalam langit yang gelap dan tidak terpolusi cahaya dan menjadi sasaran yang mudah bahkan dalam kondisi perkotaan dengan teropong. Dalam teleskop amatir yang lebih besar dengan diameter lensa objektif antara 15 dan 23 cm, planet itu nampak sebagai piringan biru pucat dengan penggelapan tepi yang khas. Dengan teleskop besar yang ukurannya 25 cm atau lebih lebar, pola-pola awan, begitu pula beberapa satelit yang lebih besar, seperti Titania dan Oberon, mungkin juga kelihatan.
Struktur internal
Secara kasar Uranus massanya 14,5 kali massa Bumi, menjadikannya planet yang paling ringan di antara planet-planet raksasa, sementara itu kerapatannya 1,27 g/cm³ membuatnya planet paling tidak padat kedua setelah Saturnus.[7] Meskipun bergaristengah sedikit lebih besar daripada Neptunus (kira-kira garis tengah Bumi), Uranus lebih ringan.[5] Nilai ini menandakan bahwa ia terutama terdiri dari beragam es, seperti air, amonia dan metana.[9] Massa total es di bagian dalam Uranus tidak diketahui secara tepat, dengan munculnya gambaran-gambaran berbeda tergantung dari model yang dipilih; namun pasti antara 9,3 dan 13,5 massa Bumi. Hidrogen dan helium hanya menyusun sebagian kecil dari keseluruhan, sebesar antara 0,5 dan 1,5 massa Bumi. Massa sisanya (0,5 hingga 3,7 massa Bumi) diperhitungkan untuk massa material batuan.
Model standar struktur Uranus adalah ia terdiri dari tiga lapisan: inti di bagian tengah, mantel ber-es di lapisan tengah dan selubung hidrogen/helium gas. Intinya relatif kecil, dengan massa hanya 0,55 massa Bumi dan jari-jari kurang dari 20 persen jari-jari Uranus; mantelnya merupakan bagian terbesar planet tersebut, dengan sekitar 13,4 massa Bumi, sementara itu atmosfer atas relatif kecil, dengan berat sekitar 0,5 massa Bumi dan meluas sampai 20 persen terakhir jari-jari Uranus.[ Inti Uranus kerapatannya sekitar 9 g/cm³, dengan tekanan di tengahnya 8 juta bar (800 GPa) dan suhu sekitar 5000 K. Mantel esnya nyatanya tidak terdiri dari es dalam pengertian pada umumnya, tetapi dari fluida panas dan rapat yang terdiri atas air, amonia dan volatil lain. Fluida ini, yang berdaya hantar listrik tinggi, kadang-kadang disebut lautan air–amonia. Komposisi terbesar Uranus dan Neptunus sangat berbeda dari Jupiter dan Saturnus, dengan es mendominasi atas gas, oleh karenanya memberi alasan klasifikasi mereka yang terpisah sebagai raksasa es.
Sementara model yang diperkirakan di atas lebih atau kurang standar, ia tidaklah unik; model-model lain juga sesuai dengan pengamatan. Contohnya, jika jumlah substansial hidrogen dan materi batuan bercampur dalam mantel es, massa es total di interior akan lebih kecil dan begitu pula, massa batuan total akan lebih besar. Data yang ada sekarang tidak memungkinkan sains menentukan model mana yang benar. Struktur interior fluida Uranus berarti bahwa ia tidak memiliki permukaan padat. Atmosfer gasnya sedikit demi sedikit berganti menjadi lapisan cairan internal. Namun, demi kemudahan, sebuah bola pepat yang berevolusi ditetapkan di titik dimana tekanan sama dengan 1 bar (100 kPa), dibuat secara kondisional sebagai suatu ‘permukaan’. Uranus mempunyai jari-jari ekuator dan kutub masing-masing 25 559 ± 4 dan 24 973 ± 20 km. Permukaan ini akan digunakan di seluruh artikel ini sebagai titik nol untuk ketinggian.
Panas internal
Panas internal Uranus jelas nampak lebih rendah daripada planet raksasa lain; dalam istilah astronomi, fluks panasnya rendah. Penyebab begitu rendahnya suhu internal Uranus masih tidak dimengerti. Neptunus, yang hampir merupakan kembaran Uranus dalam hal ukuran dan komposisi, meradiasikan sebanyak 2,61 kali energi yang diterimanya dari Matahari ke angkasa. Kontrasnya, Uranus, hampir tidak meradiasikan panas berlebih sama sekali. Daya total yang diradiasikan oleh Uranus dalam bagian inframerah jauh dari spektrum adalah 1,06 ± 0,08 kali energi Matahari yang diserap dalam atmosfernya. Kenyataannya, fluks panas Uranus hanya 0,042 ± 0,047 W/m², yang lebih rendah daripada panas internal Bumi yang sekitar 0,075 W/m². Suhu terendah yang tercatat di tropopause Uranus adalah 49 K (−224 °C),menjadikan Uranus sebagai planet terdingin dalam Tata Surya.
Hipotesis dari perbedaan ketidaksesuaian ini di antaranya bahwa saat Uranus "dipukul" oleh penabrak yang sangat berat yang menyebabkan kemiringan sumbunya yang ekstrem, peristiwa itu juga menyebabkan keluarnya sebagian besar panas primordialnya, meninggalkannya dengan suhu intinya yang sangat menurun. Hipotesis lain adalah bahwa beberapa bentuk penghalang ada di lapisan atas Uranus yang mencegah panas inti mencapai di permukaan. Contohnya, konveksi mungkin berlangsung pada sekumpulan lapisan yang komposisinya berbeda, yang menghalangi penghantaran panas ke atas.
Atmosfer
Meskipun tidak ada permukaan padat yang terdefinisi dengan jelas dalam interior Uranus, bagian terluar dari selimut gas Uranus yang dapat diakses oleh penginderaan jauh disebut atmosfernya. Kemampuan penginderaan jauh berlanjut ke bawah hingga kira-kira 300 km di bawah level 1 bar (100 kPa), dengan tekanan yang bersesuaian sekitar 100 bar (10 MPa) dan suhu 320 K. Korona yang tipis atmosfer itu meluas jauh hingga lebih dari dua jari-jari planet dari permukaan nominal pada tekanan 1 bar. Atmosfer Uranian dapat dibagi menjadi tiga lapisan: troposfer, antara ketinggian −300 dan 50 km dan tekanan dari 100 sampai 0,1 bar; (10 MPa sampai 10 kPa), Stratosfer, kisaran ketinggiannnya antara 50 dan 4000 km dan tekanan antara 0,1 and 10–10 bar (10 kPa to 10 µPa) dan termosfer/korona yang meluas dari 4.000 km hingga setinggi 50.000 km dari permukaan. Mesosfer tidak ada.
Komposisi
Komposisi atmosfer Uranian berbeda dari komposisi Uranus secara keseluruhan, ia terutama terdiri dari hidrogen molekuler dan helium. Fraksi mol helium, yaitu jumlah atom helium per molekul gas, adalah 0,15 ± 0,03 di troposfer atas, yang bersesuaian dengan fraksi massa 0,26 ± 0,05. Nilai ini sangat dekat dekat fraksi massa helium protosolar 0,275 ± 0,01, menandakan bahwa helium tidak pernah berada di tengah-tengah planet seperti halnya pada raksasa-raksasa gas. Penyusun yang paling melimpah ketiga dari atmosfer Uranian adalah metana (CH4). Metana memiliki pita penyerapan yang kuat pada cahaya tampak dan dekat-inframerah membuat Uranus nampak berwarna hijau-biru atau sian. Molekul metana menempati 2,3% atmosfernya dalam fraksi mol di bawah lapisan awan metana pada level tekanan 1,3 bar (130 kPa); ini menyatakan kira-kira 20 hingga 30 kali limpahan karbon yang ditemukan di Matahari. Rasio pencampuran jauh lebih rendah di atmosfer atas dikarenakan suhunya yang sangat rendah, yang menurunkan level kejenuhan dan menyebabkan metana yang berlebih membeku. Kelimpahan senyawa yang kurang volatil seperti amonia, air dan hidrogen sulfida pada atmosfer yang dalam tidak begitu diketahui. Namun, mungkin nilainya juga lebih tinggi daripada yang ada di Matahari. Selain metana, sejumlah kecil berbagai hidrokarbon ditemukan di stratosfernya Uranus, yang diperkirakan dihasilkan dari metana oleh fotolisis yang diinduksi oleh radiasi ultraviolet Matahari. Mereka termasuk etana (C2H6), asetilena (C2H2), metilasetilena (CH3C2H), diasetilena (C2HC2H). Spektroskopi juga mengungkapkan jejak-jejak uap air, karbon monoksida dan karbon dioksida di atmosfer atas, yang hanya dapat berasal dari sumber luar seperti debu yang jatuh dan komet.
Troposfer
Troposfer adalah bagian atmosfer terbawah dan paling rapat dan bercirikan dengan turunnya suhu bersama dengan naiknya ketinggian. Suhu menurun dari sekitar 320 K di dasar troposfer nominal pada −300 km hingga 53 K pada 50 km. Suhu di daerah atas terdingin dari troposfer (tropopause) sebenarnya bervariasi dalam kisaran antara 49 dan 57 K bergantung pada ketinggian di planet. Daerah tropopause bertanggungjawab bagi kebanyakan pancaran inframerah jauh panas planet itu dan oleh karenanya menentukan suhu efektif 59,1 ± 0,3 K.
Troposfernya dipercaya memiliki struktur awan yang sangat kompleks; awan air dihipotesiskan terletak dalam kisaran tekanan 50 sampai 100 bar (5 sampai 10 MPa), awan amonium hidrosulfida dalam kisaran 20 sampai 40 bar (2 sampai 4 MPa), awan amonia atau hidrogen sulfida antara 3 dan 10 bar (0,3 to 1 MPa) dan terakhir awan metana tipis yang terdeteksi langsung pada 1 sampai 2 bar (0,1 sampai 0,2 MPa). Troposfer Uranus merupakan bagian atmosfernya yang sangat dinamis, menunjukkan angin yang kuat, awan yang cerah dan perubahan musim, yang akan dibahas di bawah.
Atmosfer atas
Lapisan tengah atmosfer Uranian adalah stratosfer, dimana suhu umumnya naik sesuai dengan naiknya ketinggian dari 53 K di tropopause sampai antara 800 dan 850 K di dasar termosfer. Pemanasan stratosfer disebabkan oleh penyerapan radiasi UV dan inframerah Matahari oleh metana dan hidrokarbon lain, yang terbentuk di bagian atmosfer ini sebagai hasil dari fotolisis metana. Panas juga dihantarkan dari termosfer yang panas itu. Hidrokarbon menempati lapisan yang relatif sempit pada ketinggian antara 100 dan 280 km yang bersesuaian dengan kisaran tekanan 10 hingga 0,1 mbar (1000 hingga 10 kPa) dan suhu antara 75 dan 170 K. Hidrokarbon yang paling melimpah adalah metana, asetilena dan etana dengan rasio pencampuran sekitar 10−7 relatif pada hidrogen. Rasio pencampuran karbon monoksida sama pada ketinggian-ketinggian ini. Hidrokarbon yang lebih berat dan karbon dioksida rasio pencampurannya sebesar tiga kali lebih rendah. Rasio kelimpahan air adalah sekitar 7×10−9. Etana dan asetilena cenderung berkondensasi bagian bawah stratosfer dan tropopause yang lebih dingin (di bawah level 10 mBar) membentuk lapisan kabut, yang mungkin sebagian bertanggungjawab bagi penampilan Uranus yang biasa. Akan tetapi, konsentrasi hidrokarbon di stratosfer Uranian di atas kabut tersebut rendah sekali dibandingkan dengan konsentrasi pada stratosfer planet raksasa lain.
Lapisan terluar atmosfer Uranian adalah termosfer dan korona, yang suhunya seragam sekitar 800 hingga 850 K. Sumber panas yang diperlukan untuk mempertahankan nilai sedemikian tidak dimengerti, karena baik radiasi UV jauh dan UV ekstrem maupun aktivitas aurora tidak dapat memberi energi yang diperlukan. Efisiensi pendinginan yang lemah itu yang diakibatkan kurangnya hidrokarbon di stratosfer di atas level tekanan 0,1 mBar mungkin juga ikut menyebabkannya. Selain hidrogen molekuler, termosfer-korona mengandung bagian besar atom hidrogen. Massa mereka yang kecil bersama dengan suhu yang tinggi menjelaskan mengapa korona itu meluas sejauh 50 000 km atau dua jari-jari Uranian dari planet itu. Korona yang meluas ini merupakan fitur Uranus yang unik. Efeknya termasuk gaya hambat terhadap partikel kecil yang mengorbit Uranus, secara umum menyebabkan berkurangnya debu pada cincin Uranian. Termosfer Uranian, bersama dengan bagian atas stratosfer, bersesuaian dengan ionosfer Uranus. Pengamatan menunjukkan bahwa ionosfer tersebut berada pada ketinggian dari 2 000 sampai 10 000 km. Ionosfer Uranian lebih rapat daripada ionosfer Saturnus maupun Neptunus, yang mungkin muncul dari konsentrasi rendah dari hidrokarbon di stratosfer. Ionosfer itu dipertahankan terutama oleh radiasi UV Matahari dan kerapatannya bergantung pada aktivitas Matahari. Aktivitas Aurora di sini kecil dibandingkan dengan pada Jupiter dan Saturnus.
Cincin planet
Uranus mempunyai sistem cincin planet yang rumit, yang merupakan sistem demikian yang kedua yang ditemukan di Tata Surya setelah cincin Saturnus. Cincin-cincin tersebut tersusun dari partikel yang sangat gelap, yang beragam ukurannya dari mikrometer hingga sepersekian meter. Tiga belas cincin yang berbeda saat ini diketahui, yang paling terang adalah cincin ε (epsilon). Semua cincin Uranus (kecuali dua) sangat sempit—umumnya mereka lebarnya beberapa kilometer. Cincin tersebut mungkin cukup muda; pertimbangan dinamis menandakan bahwa mereka tidak terbentuk bersamaan dengan pembentukan Uranus. Materi di cincin-cincin itu mungkin dulu adalah bagian dari satu (atau beberapa) satelit yang terpecah oleh tubrukan berkecepatan tinggi. Dari banyak pecahan-pecahan yang terbentuk sebagai hasil dari tabrakan itu hanya beberapa partikel yang bertahan dalam jumlah terbatas zona stabil yang bersesuaian dengan cincin yang ada sekarang.
William Herschel mendeskripsikan cincin yang mungkin ada di sekitar Uranus pada 1789. Penampakan ini umumnya dianggap meragukan, karena cincin-cincin itu cukup redup dan pada dua abad berikutnya tak satupun yang diketahui oleh pengamat lain. Namun Herschel masih membuat deskripsi akurat tentang ukuran cincin epsilon, sudut relatifnya terhadap Bumi, warna merahnya dan perubahannya yang nampak bersamaan dengan Uranus mengitari Matahari. Sistem cincin itu benar-benar ditemukan pada 10 Maret 1977 oleh James L. Elliot, Edward W. Dunham dan Douglas J. Mink menggunakan Kuiper Airborne Observatory. Penemuan itu merupakan keberuntungan; mereka berencana menggunakan okultasi bintang SAO 158687 oleh Uranus untuk mempelajari atmosfer planet itu. Akan tetapi, saat pengamatan mereka dianalisis, mereka menemukan bahwa bintang itu telah menghilang sebentar dari pandangan lima kali sebelum dan sesudah ia tidak nampak di balik planet itu. Mereka menyimpulkan bahwa pasti ada suatu sistem cincin di sekitar planet tersebut. Kemudian mereka mendeteksi empat cincin tambahan. Cincin-cincin itu langsung dicitrakan saat Voyager 2 lewat dekat Uranus pada 1986. Voyager 2 juga menemukan dua cincin tambahan yang nampak redup sehingga total jumlahnya menjadi sebelas.
Pada Desember 2005, Teleskop angkasa Hubble mendeteksi sepasang cincin yang sebelumnya tidak diketahui. Yang terbesar terletak pada dua kali jarak cincin yang telah diketahui dari planet itu. Cincin-cincin baru ini begitu jauh dari planet tersebut hingga mereka disebut sistem cincin "luar". Hubble juga melihat dua satelit kecil yang salah satunya, Mab, berbagi orbit dengan cincin terluar yang baru ditemukan. Cincin-cincin baru ini membuat jumlah keseluruhan cincin Uranian menjadi 13. Pada April 2006, gambar cincin baru tersebut dengan Observatorium Keck menghasilkan warna cincin-cincin luar: yang terluar biru dan yang lainnya merah. Satu hipotesis mengenai warna biru cincin luar tersebut adalah bahwa ia terdiri atas partikel kecil air es dari permukaan Mab yang cukup kecil untuk menghamburkan cahaya biru. Kontras dengan itu, cincin-cincin dalam planet itu nampak abu-abu.
Medan magnet
Sebelum kedatangan Voyager 2, tidak ada pengukuran magnetosfer Uranian yang dilakukan, sehingga sifatnya tetap jadi misteri. Sebelum tahun 1986, para astronom telah memperkirakan medan magnet Uranus segaris dengan angin surya , maka karenanya ia akan segaris dengan kutub planet itu yang terletak di ekliptika.
Pengamatan Voyager' mengungkapkan bahwa medan magnet Uranus aneh, baik karena ia tak berasal dari pusat geometrik planet tersebut dan karena ia miring 59° dari poros rotasi. Faktanya dwikutub magnetiknya bergeser dari tengah planet itu ke kutub rotasi selatan sejauh sepertiga radius planet itu. Geometri yang tidak biasa ini menyebabkan magnetosfer yang sangat tidak simetris, dimana kuat medan magnet pada permukaan di belahan selatan dapat serendah 0,1 gauss (10 µT), sedangkan di belahan utara kuatnya dapat setinggi 1,1 gauss (110 µT). Medan rata-rata di permukaan adalah 0,23 gauss (23 µT). Sebagai perbandingan, medan magnet Bumi kuatnya kira-kira sama pada kedua kutub dan "ekuator magnetik"nya kira-kira sejajar dengan ekuator geografisnya. Momen dipol Uranus 50 kali momen dipol Bumi. Neptunus juga punya medan magnetik yang bergeser dan miring, menyarankan bahwa ini mungkin fitur umum raksasa es. Satu hipotesis ialah bahwa, tidak seperti medan magnet planet kebumian dan raksasa gas, yang dibangkitkan dalam inti mereka, medan magnet raksasa es dibangkitkan oleh gerakan pada kedalaman yang relatif dangkal, contohnya, di lautan air–amonia.
Meskipun penjajarannya mengundang keingintahuan, dalam segi lain magnetosfer Uranian mirip seperti planet lain: ia memiliki kejutan busur yang berlokasi 23 radius Uranian darinya, magnetopause pada 18 jari-jari Uranian, ekor magnetofer yang terbentuk penuh, serta sabuk radiasi. Secara keseluruhan, struktur magnetosfer Uranus berbeda dari Jupiter dan lebih mirip dengan Saturnus. Ekor magnetosfer Uranus memanjang di balik planet itu ke luar angkasa sejauh jutaan kilometer dan terpuntir oleh rotasi menyamping planet itu menjadi seperti pembuka tutup botol yang panjang.
Di magnetosfer Uranus terdapat partikel bermuatan: proton dan elektron dengan sejumlah kecil ion H2+. Tidak ada ion yang lebih berat yang terdeteksi. Banyak partikel ini mungkin berasal dari korona atmosfernya yang panas. Energi ion dan elektron masing-masing bisa setinggi 4 dan 1,2 megaelektronvolt. Kerapatan ion berenergi rendah (di bawah 1 kiloelektronvolt) di magnetosfer dalam adalah sekitar 2 cm−3. Populasi partikel ini sangat dipengaruhi oleh satelit-satelit Uranus yang melalui magnetosfer itu meninggalkan celah-celah yang dapat diketahui. Fluks partikelnya cukup tinggi untuk menyebabkan penggelapan atau pencuacaan angkasa dari permukaan satelit dalam skala waktu yang secara astronomis cepat 100.000 tahun. Ini mungkin penyebab dari warna satelit-satelit dan cincin-cincinnya yang gelap seragam. Uranus mempunyai aurora yang terbentuk dengan baik, yang terlihat sebagai busur yang terang di sekitar kedua kutub magnetik. Namun, tidak seperti pada Jupiter, Uranus auroranya nampak tidak penting bagi keseimbangan energi termosfer planetnya.
Iklim
Pada panjang gelombang ultraviolet dan cahaya nampak, atmosfer Uranus nampak biasa sekali dibandingkan dengan raksasa gas lain, bahkan dengan Neptunus, yang sangat mirip dengannya dari segi lain. Saat Voyager 2 terbang mendekati Uranus pada 1986, ia mengamati total 10 fitur awan di seluruh bagian planet itu. Satu penjelasan yang diajukan atas kurangnya fitur ini adalah bahwa panas internal Uranus nampak jelas lebih rendah daripada panas internal planet-planet raksasa lain. Suhu terendah yang tercatat di tropopause Uranus adalah 49 K, menjadikan Uranus planet terdingin dalam Tata Surya, lebih dingin daripada Neptunus.
Struktur berpita, angin dan awan
Pada 1986 Voyager 2 menemukan bahwa belahan selatan Uranus yang terlihat dapat dibagi menjadi dua daerah: kap kutub yang terang dan pita ekuator yang gelap (lihat gambar di kanan). Perbatasan mereka terletak pada sekitar −45° garis lintang. Suatu pita sempit yang menempati kisaran garis lintang dari −45 sampai −50° merupakan fitur besar paling terang pada permukaan kentara planet Uranus. Ia disebut "kerah" selatan. Kap dan kerah tersebut diduga sebagai daerah yang rapat dari awan metana yang terletak dalam kisaran tekanan 1,3 sampai 2 bar (lihat atas). Namun sayang Voyager 2 tiba selama tinggi musim panas planet itu dan tidak bisa mengamati belahan utara. Akan tetapi, pada permulaan abad kedua puluh satu, saat daerah kutub utara terlihat, Teleskop angkasa Hubble dan Keck tidak mengamati ada kerah maupun kap di belahan utara. Jadi Uranus kelihatannya asimetris: terang dekat kutub selatan dan gelap seragam di daerah di utara kerah selatan. Selain struktur berpita skala besar, Voyager 2 mengamati sepuluh awan terang kecil, kebanyakan letaknya beberapa derajat ke utara dari kerah itu. Dalam semua segi lain Uranus terlihat seperti planet yang mati dinamis pada tahun 1986.
Namun pada tahun 1990-an, jumlah fitur awan terang yang teramati meningkat pesat sebagian karena teknik pencitraan resolusi tinggi yang baru menjadi tersedia. Mayoritas mereka ditemukan di belahan utara Uranus saat ia mulai kelihatan. Penjelasan mula-mula—bahwa awan-awan terang itu lebih mudah diidentifikasi di bagian gelap planet tersebut, sedangkan di belahan selatan kerah terangnya menutupi mereka—ditunjukkan tidak benar: banyak sebenarnya fitur-fitur itu memang meningkat pesat. Namun demikian, ada perbedaan antara awan-awan di tiap belahan planet itu. Awan-awan di utara lebih kecil, lebih tajam dan lebih terang.[ Nampaknya mereka terletak pada tempat yang lebih tinggi. Awan-awan itu masa hidupnya beragam. Beberapa awan kecil bertahan beberapa jam, sementara sedikitnya satu awan selatan mungkin telah ada sejak terbang dekatnya Voyager. Pengamatan terbaru juga menemukan bahwa fitur awan di Uranus punya banyak persamaan dengan yang ada di Neptunus. Sebagai contoh, bintik-bintik gelap yang umum terdapat di Neptunus tidak pernah diamati di Uranus sebelum tahun 2006, saat fitur demikian yang pertama dicitrakan. Diperkirakan bahwa Uranus menjadi lebih mirip Neptunus selama musim ekuinoksnya.
Pelacakan banyak fitur-fitur awan memungkinkan penentuan angin zona yang berhembus di troposfer atas Uranus. Di ekuator arah angin adalah retrograd, yang artinya bahwa mereka berhembus ke arah sebaliknya dari rotasi planet itu. Kecepatan mereka dari −100 hingga −50 m/s. Kecepatan angin meningkat dengan jarak dari ekuator, mencapai nilai nol pada garis lintang dekat ±20°, dimana suhu troposfer minimum berada. Dekat kutub-kutubnya, angin berganti arahnya menjadi prograd, mengalir searah dengan rotasi planetnya. Kecepatan angin terus meningkat mencapai nilai maksimanya pada garis lintang ±60° sebelum jatuh ke nol di kutub. Kecepatan angin pada garis lintang −40° berkisar dari 150 hingga 200 m/s. Karena kerah di situ mengaburkan semua awan di bawah paralel itu, kecepatan yang ada di antaranya dan kutub selatan tidak mungkin diukur. Kontras dengan itu, di belahan utaranya kecepatan angin maksimum setinggi 240 m/s diamati dekat garis lintang +50°.
Variasi musim
Untuk periode singkat dari Maret hingga Mei 2004, sejumlah awan besar muncul di atmosfer Uranian, memberinya penampilan yang mirip Neptunus. Pengamatan-pengamatan termasuk kecepatan angin pemecah rekor 229 m/s (824 km/jam) badai petir yang bertahan lama yang disebut sebagai "Fourth of July fireworks" ("kembang api empat Juli"). Pada tanggal 23 Augustus, 2006, peneliti-peneliti di Space Science Institute (Boulder, CO) dan University of Wisconsin mengamati sebuah bintik gelap di permukaan Uranus, memberi para astromon pengetahuan lebih terhadap aktivitas atmosfer planet tersebut. Sebab kenaikan aktivitas secara tiba-tiba ini mesti terjadi tidak sepenuhnya diketahui, tetapi nampak bahwa kemiringan sumbu Uranus yang ekstrem menyebabkan variasi musim yang ekstrem pada cuacanya. Menentukan sifat variasi musim ini adalah sulit karena data yang baik tentang atmosfer ini telah ada kurang dari 84 tahun, atau satu tahun Uranian penuh. Sejumlah penemuan telah dibuat. Fotometri selama masa setengah tahun Uranian (mulai pada tahun 1950-an) menunjukkan variasi yang beraturan dalam kecerahan pada dua pita spektrum, dengan nilai maksimal terjadi saat soltis dan nilai minimal saat ekuinoks. Variasi periodik yang mirip, dengan nilai maksimal saat soltis, telah diketahui dalam pengukuran gelombang mikro dari troposfer dalam yang dimulai tahun 1960-an. Pengukuran suhu stratosfer yang dimulai tahun 1970-an juga menunjukkan nilai minimum dekat soltis 1986. Mayoritas variabilitas ini dipercaya terjadi karena perubahan dalam geometri pengamatan.
Akan tetapi ada beberapa alasan untuk dipercaya bahwa perubahan-perubahan musim fisik terjadi di Uranus. Sementara planet tersebut diketahui memiliki daerah kutub selatan yang terang, kutub utaranya cukup redup, yang tidak cocok dengan model perubahan iklim yang diuraikan di atas. Selama solstis utara sebelumnya tahun 1944, Uranus menampilkan kenaikan tingkat kecemerlangan, yang menyarankan bahwa kutub utara tidaklah selalu gelap sekali. Informasi ini menandakan bahwa kutub yang terlihat menjadi terang pada suatu waktu sebelum solstis dan mejadi gelap setelah ekuinoks. Analisis terperinci data cahaya tampak dan gelombang mikro mengungkapkan bahwa perubahan terang yang berkala itu tidak sepenuhnya simetris di sekitar waktu solstis, yang juga menandakan suatu perubahan pada pola-pola albedo meridional. Akhirnya pada 1990-an, bersamaan dengan Uranus meninggalkan solstisnya, Teleskop Hubble dan teleskop permukaan Bumi mengungkapkan bahwa kap kutub selatan menjadi gelap dengan jelas (kecuali kerah selatan, yang tetap terang), sementara belahan utaranya menunjukkan aktivitas yang meningkat, seperti pembentukan awan dan angin yang lebih kencang, menguatkan perkiraan bahwa ia akan segera menjadi terang.
Mekanisme perubahan-perubahan fisik itu masih tidak jelas. Berdekatan dengan solstis musim panas dan musim dingin, belahan-belahan Uranus terletak secara bergantian pada penyinaran penuh Matahari atau menghadap angkasa jauh. Menjadi terangnya belahan yang disinari Matahari itu dipekirakan hasil dari penebalan lokal awan dan kabut metana yang terletak troposfer. Kerah yang terang pada garis lintang −45° juga berhubungan dengan awan-awan metana. Perubahan-perubahan lain di daerah kutub selatan dapat dijelaskan oleh perubahan-perubahan pada lapisan awan rendah. Variasi pancaran gelombang mikro dari planet itu mungkin disebabkan oleh suatu perubahan pada sirkulasi troposfer dalam, karena awan dan kabut yang tebal mungkin menghambat konveksi. Sekarang dengan sedang tibanya ekuinoks musim semi dan musim gugur di Uranus, dinamikanya juga berubah dan konveksi dapat berlangsung lagi.
Pembentukan
Banyak yang berargumen bahwa perbedaan antara raksasa es dengan raksasa gas berlanjut pada pembentukan mereka. Tata Surya dipercaya terbentuk dari bola gas dan debu raksasa yang berotasi yang dikenal sebagai nebula pramatahari. Sebagian besar gas nebula itu, terutama hidrogen dan helium, membentuk Matahari, sementara butiran debu berkumpul bersama membentuk protoplanet pertama. Saat planet-planet tersebut tumbuh, beberapa dari mereka akhirnya mengumpulkan cukup materi untuk gravitasi mereka untuk menarik gas nebula itu yang ditinggalkan. Semakin banyak gas yang mereka tarik, mereka menjadi semakin besar; semakin besar mereka, semakin banyak gas yang mereka tarik sampai titik kritis tercapai dan ukuran mereka mulai meningkat secara eksponensial. Raksasa-raksasa es, dengan gas nebular hanya bermassa beberapa kali Bumi, tidak pernah mencapai titik kritis itu. Simulasi terbaru migrasi planet menyarankan bahwa kedua raksasa es itu terbentuk lebih dekat kepada Matahari daripada posisi mereka sekarang dan bergerak ke arah luar setelah pembentukannya, satu hipotesis yang terperinci dalam model Nice.
Satelit
Uranus memiliki 27 satelit alam yang telah diketahui. Nama bagi satelit-satelit ini dipilih dari karakter karya Shakespeare dan Alexander Pope. Lima satelit utamanya adalah Miranda, Ariel, Umbriel, Titania dan Oberon. Sistem satelit Uranian adalah yang paling kurang masif di antara raksasa gas; memang, massa gabungan kelima satelit utamanya itupun hanya kurang dari setengah massa Triton. Satelit yang terbesar, Titania, radiusnya hanya 788,9 km, atau kurang dari setengah jari-jari Bulan, tetapi sedikit lebih besar daripada Rhea, satelit kedua terbesar Saturnus, menjadikan Titania satelit berukuran terbesar kedelapan dalam Tata Surya. Satelit itu memiliki albedo yang relatif rendah; berkisar dari 0,20 untuk Umbriel hingga 0,35 untuk Ariel (dalam cahaya hijau). Satelit itu merupakan kumpulan es-batu yang kira-kira terdiri lima puluh persen es dan lima puluh persen batu. Es itu mungkin termasuk amonia dan karbon dioksida.
Di antara satelit-satelit itu, Ariel nampak memiliki pemukaan termuda dengan kawah tabrakan paling sedikit, sedangkan Umbriel nampaknya yang tertua. Miranda memiliki ngarai patahan sedalam 20 kilometer, lapisan-lapisan berpetak dan variasi yang kacau dalam umur dan fitur permukaan. Aktivitas geologis Miranda pada masa lalu dipercaya didorong oleh pemanasan pasang-surut pada suatu ketika saat orbitnya lebih eksentrik daripada sekarang, mungkin hasil dari resonansi orbital dengan Umbriel yang dulu ada. Proses perenggangan yang diasosiasikan dengan diapir yang naik mungkin merupakan asal dari korona-korona yang mirip 'lintasan balap' di satelit itu. Sama dengan itu, Ariel dipercaya pernah berada dalam resonansi 4:1 dengan Titania.


Sumber : http://id.wikipedia.org/wiki/Uranus

Neptunus
Neptunus merupakan planet terjauh (kedelapan) jika ditinjau dari Matahari. Planet ini dinamai dari dewa lautan Romawi. Neptunus merupakan planet terbesar keempat berdasarkan diameter (49.530 km) dan terbesar ketiga berdasarkan massa. Massa Neptunus tercatat 17 kali lebih besar daripada Bumi, dan sedikit lebih besar daripada Uranus.[7] Neptunus mengorbit Matahari pada jarak 30,1 SA atau se
kitar 4.450 juta km. Periode rotasi planet ini adalah 16,1 jam, sedangkan periode revolusinya adalah 164,8 tahun. Simbol astronomisnya adalah , yang merupakan trident dewa Neptunus.
Neptunus ditemukan pada tanggal 23 September 1846. Planet ini merupakan planet pertama yang ditemukan melalui prediksi matematika. Perubahan yang tak terduga di orbit Uranus membuat Alexis Bouvard menyimpulkan bahwa hal tersebut diakibatkan oleh gangguan gravitasi dari planet yang tak dikenal. Neptunus selanjutnya diamati oleh Johann Galle dalam posisi yang diprediksikan oleh Urbain Le Verrier. Satelit alam terbesarnya, Triton, ditemukan segera sesudahnya, sementara 12 satelit alam lainnya baru ditemukan lewat teleskop pada abad ke-20. Neptunus telah dikunjungi oleh satu wahana angkasa, yaitu Voyager 2, yang terbang melewati planet tersebut pada tanggal 25 Agustus 1989.
Komposisi penyusun planet ini mirip dengan Uranus, dan komposisi keduanya berbeda dari raksasa gas Yupiter dan Saturnus. Atmosfer Neptunus mengandung hidrogen, helium, hidrokarbon, kemungkinan nitrogen, dan kandungan "es" yang besar seperti es air, amonia, dan metana. Astronom kadang-kadang mengategorikan Uranus dan Neptunus sebagai "raksasa es" untuk menekankan perbedaannya. Seperti Uranus, interior Neptunus terdiri dari es dan batu. Metana di wilayah terluar planet merupakan salah satu penyebab kenampakan kebiruan Neptunus.
Sementara atmosfer Uranus relatif tidak berciri, atmosfer Neptunus bersifat aktif dan menunjukkan pola cuaca. Contohnya, pada saat Voyager 2 terbang melewatinya pada tahun 1989, di belahan selatan planet terdapat Titik Gelap Besar yang mirip dengan Titik Merah Besar di Yupiter. Pola cuaca tersebut diakibatkan oleh angin yang sangat kencang, dengan kecepatan hingga 2.100 km/jam. Karena jaraknya yang jauh dari Matahari, atmosfer luar Neptunus merupakan salah satu tempat terdingin di Tata Surya, dengan suhu terdingin −218 °C (55 K). Suhu di inti planet diperkirakan sebesar 5.400 K (5.000 °C). Neptunus memiliki sistem cincin yang tipis. Sistem cincin tersebut baru dilacaktemu pada tahun 1960-an dan dipastikan keberadaannya oleh Voyager 2 pada tahun 1989.
Sejarah
Penemuan
Lukisan Galileo menunjukkan bahwa ia pertama melihat Neptunus pada tanggal 28 Desember 1612 dan 27 Januari 1613. Pada kedua hari tersebut, Galileo salah menganggap Neptunus sebagai sebuah bintang tetap ketika planet ini muncul sangat dekat—konjungsi—dengan Yupiter pada langit malam; karena itu, ia tidak dianggap sebagai penemu Neptunus. Pada masa pengamatan pertamanya bulan Desember 1612, Neptunus bersifat tetap di langit karena planet ini baru saja mengalami penghuluan pada hari itu. Gerakan ke belakang ini terbentuk ketika orbit Bumi membawa Bumi melewati planet terluar. Karena Neptunus baru saja memulai siklus penghuluan tahunannya, gerakan planet ini terlalu sulit dilacak menggunakan teleskop kecil Galileo. Pada Juli 2009, fisikawan Universitas Melbourne, David Jamieson mengumumkan adanya bukti baru yang menyatakan bahwa Galileo setidaknya sadar bahwa bintang yang ia amati telah berpindah relatif terhadap bintang tetap.
Tahun 1821, Alexis Bouvard menerbitkan tabel astronomi orbit tetangga Neptunus, yaitu Uranus. Pengamatan selanjutnya menemukan pergeseran dari tabel tersebut, sehingga mendorong Bouvard berhipotesis bahwa suatu benda tak diketahui sedang melakukan perturbasi pada orbitnya melalui interaksi gravitasi. Tahun 1843, John Couch Adams mulai mengamati orbit Uranus menggunakan data yang ia miliki. Melalui James Challis, ia meminta Sir George Airy, Astronomer Royal, mengirimkan data tersebut pada Februari 1844. Adams terus melakukan pengamatannya pada 1845–1846 dan menghasilkan beberapa perkiraan yang berbeda tentang sebuah planet baru, namun tidak menanggapi permintaan dari Airy tentang orbit Uranus.
Tahun 1845–1846, Urbain Le Verrier, terlepas dari Adams, mengembangkan penghitungannya sendiri namun juga mengalami kesulitan memunculkan antusiasme rekannya tersebut. Pada Juni 1846, setelah melihat terbitan perkiraan pertama bujur planet karya Le Verrier dan kesamaan dengan perkiraan Adams, Airy membujuk Direktur Cambridge Observatory, James Challis untuk mencari planet itu. Challis dengan semangat mengamati langit sepanjang Agustus dan September.
Sementara itu, melalui surat, Le Verrier meminta astronom Observatorium Berlin, Johann Gottfried Galle untuk mencari planet ini menggunakan refraktor observatorium. Heinrich d'Arrest, seorang pelajar di observatorium ini, memberitahu Galle bahwa mereka mampu membandingkan carta langit terkini di wilayah lokasi prediksi Le Verrier dengan keadaan langit saat itu untuk menemukan karakteristik perpindahan suatu planet, berbeda dengan bintang tetap. Pada sore 23 September 1846 ketika surat Le Verrier diterima, Neptunus ditemukan 1° dari tempat yang diprediksi Le Verrier, dan sekitar 12° dari prediksi Adams. Challis kemudian menyadari bahwa ia telah mengamati planet ini dua kali pada bulan Agustus dan gagal mengidentifikasinya karena pendekatannya yang kasual terhadap pengamatan tersebut.
Setelah penemuan tersebut, muncul persaingan yang lebih nasionalis antara Perancis dan Britania Raya mengenai pihak yang pantas mendapat penghargaan atas penemuan planet ini. Konsensus internasional memutuskan bahwa Le Verrier dan Adams sama-sama berhak mendapat penghargaan. Sejak 1966, Dennis Rawlins mempertanyakan kredibilitas klaim Adams tentang penemuan bersama dan masalah ini dievaluasi kembali oleh sejarawan dengan pengembalian dokumen bersejarah "Neptune papers" pada tahun 1998 ke Royal Observatory, Greenwich. Setelah meninjau dokumen tersebut, mereka menyatakan bahwa, "Adams tidak pantas menerima penghargaan bersama Le Verrier atas penemuan Neptunus. Penghargaan ini berhak diberikan kepada orang yang sama-sama berhasil memprediksikan lokasi planet dan meyakinkan para astronom untuk mencarinya."
Penamaan
Sesaat setelah penemuannya, Neptunus hanya disebut sebagai "planet di luar Uranus" atau "planet Le Verrier". Usulan nama pertama berasal dari Galle, yang mengusulkan Janus. Di Inggris, Challis mengusulkan Oceanus.
Dengan mengklaim hak pemberian nama temuannya, Le Verrier langsung mengusulkan nama Neptunus untuk planet ini, sementara secara keliru menyatakan bahwa nama tersebut resmi disetujui oleh Bureau des Longitudes Perancis. Pada bulan Oktober, ia mengusulkan agar planet ini diberi nama Le Verrier, sesuai nama dirinya, dan ia mendapatkan dukungan setia dari Direktur Observatorium, François Arago. Usulan ini ditentang di luar Perancis. Almanak Perancis langsung memperkenalkan kembali nama Herschel untuk Uranus, sesuai nama penemunya Sir William Herschel, dan Leverrier untuk planet baru ini.
Struve membawa nama Neptunus kepada Akademi Ilmu Pengetahuan Saint Petersburg pada 29 Desember 1846. Neptunus kelak menjadi nama yang disetujui secara internasional. Dalam mitologi Romawi, Neptunus adalah dewa laut, yang dapat dikenali dari Poseidon Yunaninya. Permintaan nama mitologi sepertinya mendukung tata nama planet-planet lain, yang semuanya, kecuali Bumi, diberi nama sesuai mitologi Yunani dan Romawi.
Banyak bahasa di dunia saat ini, bahkan di negara-negara yang tidak memiliki hubungan langsung dengan budaya Yunani-Romawi, memakai berbagai varian nama "Neptunus" untuk planet ini; dalam bahasa Cina, Jepang, dan Korea, nama planet ini dapat diterjemahkan secara harfiah sebagai "bintang raja laut" (
海王星), karena Neptunus adalah dewa laut.
Status
Sejak penemuannya tahun 1846 hingga penemuan Pluto pada tahun 1930, Neptunus adalah planet terjauh yang diketahui manusia. Setelah penemuan Pluto, Neptunus menjadi planet kedua terakhir selama 20 tahun antara 1979 dan 1999 ketika orbit elips Pluto membawanya lebih dekat dengan Matahari dibandingkan Neptunus. Penemuan Sabuk Kuiper tahun 1992 mendorong banyak astronom memperdebatkan apakah Pluto pantas dianggap sebagai planet atau bagian dari struktur terbesar sabuk tersebut. Pada tahun 2006, Persatuan Astronomi Internasional mendefinisikan kata "planet" untuk pertama kalinya, kembali mengelompokkan Pluto sebagai "planet kerdil" dan menjadikan Neptunus sekali lagi planet terakhir di Tata Surya.
Komposisi dan struktur
Neptunus memiliki massa sebesar 1,0243×1026 kg, atau tujuh belas kali massa Bumi dan 1/19 kali massa Yupiter. Planet ini merupakan salah satu dari dua planet (selain Yupiter) yang gravitasi permukaannya lebih besar daripada Bumi. Jari-jari khatulistiwanya tercatat sebesar 24.764 km, atau sekitar empat kali jari-jari Bumi. Neptunus dan Uranus sering dijuluki "raksasa es", karena ukurannya yang lebih kecil dan kadar volatil yang lebih tinggi daripada Yupiter dan Saturnus. Dalam pencarian planet luar surya, Neptunus telah digunakan sebagai metonim: objek-objek luar surya dengan massa yang mirip sering dijuluki dengan nama "Neptunes".
Struktur internal
Struktur internal Neptunus mirip dengan Uranus. Atmosfer Neptunus membentuk sekitar lima hingga sepuluh persen massanya, dan kira-kira meliputi 10 hingga 20 persen struktur planet tersebut. Tekanan di atmosfer dapat mencapai 10 GPa. Metana, amonia, dan air dapat ditemui di daerah bawah atmosfer.
uhu di daerah mantel dapat mencapai 2.000 K hingga 5.000 K. Massa mantel tersebut sama dengan 10 hingga 15 kali massa Bumi, serta kaya akan air, amonia, dan metana. Seperti kebiasaan dalam ilmu keplanetan, campuran ini dijuluki ber-es, meskipun "es" tersebut merupakan fluida superkritikal. Fluida ini, dengan konduktivitas elektrik yang tinggi, kadang-kadang disebut samudra air-amonia. Di kedalaman 7.000 km, metana dapat terurai menjadi kristal intan yang lalu berpresipitasi ke inti. Mantel terdiri dari lapisan air ionik, yaitu tempat molekul air pecah menjadi sup ion hidrogen dan oksigen. Di lapisan mantel yang lebih dalam, terdapat air superionik, yaitu tempat oksigen mengristal, namun ion hidrogen mengapung dengan bebas di oksigen.
Inti Neptunus terdiri dari besi, nikel, dan silikat, dengan massa 1,2 kali Bumi. Tekanan di inti diperkirakan sebesar 7 Mbar (700 GPa), jutaan kali lebih besar daripada tekanan di permukaan Bumi. Sementara itu, suhu di inti dapat mencapai 5.400 K.
Atmosfer
Di ketinggian tinggi, atmosfer Neptunus terdiri dari 80% hidrogen dan 19% helium. Jejak-jejak metana juga ada di Neptunus. Pita penyerap metana terbentuk di rentang gelombang di atas 600 nm, di bagian merah dan inframerah spektrum. Seperti Uranus, penyerapan cahaya merah oleh metana atmosfer adalah bagian yang memberikan Neptunus warna biru, meski warna azure cerah Neptunus berbeda daripada warna cyan sejuk Uranus. Karena zat metana atmosfer Neptunus sama seperti Uranus, sejumlah konstituen atmosfer yang tidak dikenal diduga turut berkontribusi pada warna Neptunus.
Atmosfer Neptunus terbagi lagi menjadi dua wilayah utama; troposfer bawah, tempat suhu terus menurun seiring ketinggiannya, dan stratosfer, tempat suhu terus meningkat seiring ketinggiannya. Batas di antara keduanya, yaitu tropopause, ada pada tekanan 01 bar (100 kPa). Stratosfer kemudian dilanjutkan oleh termosfer pada tekanan kurang dari 10−5 hingga 10−4 mikrobar (1 hingga 10 Pa). Termosfer secara bertahap berubah menjadi eksosfer.
Model menunjukkan bahwa troposfer Neptunus dilapisi oleh awan dengan berbagai komposisi tergantung ketinggiannya. Awan tingkat atas muncul pada tekanan kurang dari satu bar, yang suhunya cocok bagi metana untuk mengembun. Untuk tekanan antara satu dan lima bar (100 dan 500 kPa), awan amonia dan hidrogen sulfida diyakini terbentuk. Di atas tekanan lima bar, awan Neptunus terdiri dari amonia, amonium sulfida, hidrogen sulfida dan air. Awan es air yang lebih dalam ditemukan pada tekanan sekitar 50 bar (5.0 MPa), yang suhunya mencapai 0 °C. Di bawahnya, awan amonia dan hidrogen sulfida terbentuk.
Awan tinggi di Neptunus telah diamati menghasilkan bayangan pada lapisan awan opak di bawahnya. Ada pula pita awan tinggi yang menyelimuti planet ini pada garis lintang yang sama. Pita melingkar ini selebar 50–150 km dan berada 50–110 km di atas lapisan awan.
Spektrum Neptunus menunjukkan bahwa stratosfer bawahnya berkabut akibat pengembunan produk fotolisis ultraviolet metana, seperti etana dan asetilena. Stratosfer juga merupakan tempat bagi jejak-jejak karbon monoksida dan hidrogen sianida. Stratosfer Neptunus lebih hangat daripada Uranus karena konsentrasi hidrokarbon yang tinggi.
Termosfer planet ini memiliki suhu yang tidak normal sebesar 750 K dengan alasan yang masih belum jelas. Planet ini terlalu jauh dari Matahari untuk menghasilkan suhu sepanas ini yang diakibatkan oleh radiasi ultraviolet. Satu dugaan mekanisme pemanasan ini ialah adanya interaksi atmosfer di medan magnet planet ini. Dugaan lain adalah adanya gelombang gravitasi dari dalam planet yang menghilang di atmosfer. Termosfer Neptunus terdiri dari jejak-jejak karbon dioksida dan air yang diduga terkumpul dari sumber-sumber luar seperti meteorit dan debu.
Magnetosfer
Neptune juga memiliki magnetosfer yang mirip Uranus, dengan medan magnet yang sangat miring relatif terhadap sumbu rotasinya pada 47° dan berimbang pada 0,55 radii, atau sekitar 13500 km dari pusat fisik planet ini. Sebelum Voyager tiba di Neptunus, diduga bahwa magnetosfer miring Uranus mengakibatkan rotasi Neptunus yang menyamping. Dengan membandingkan medan magnet dua planet, para ilmuwan sekarang berpikir bahwa orientasi ekstrem merupakan karakteristik aliran di bagian dalam planet. Medan ini mungkin dibentuk oleh gerakan cairan konvektif dalam kulit bola tipis pada cairan konduktor listrik (diduga berupa gabungan amonia, metana dan air) yang menghasilkan gerakan dinamo.
Komponen dipol medan magnet di khatulistiwa magnetik Neptunus sekitar 14 mikrotesla (0,14 G). Momentum magnetik dipol Neptunus sekitar 2,2 × 1017 T•m3 (14 μT•RN3; RN adalah radius Neptunus). Medan magnet Neptunus memiliki geometri rumit yang mencakup kontribusi relatif besar dari komponen non-dipolar, termasuk momentum kuadrupol kuat yang kekuatannya mungkin melebihi momentum dipol. Bumi, Yupiter, dan Saturnus memiliki momentum kuadrupol yang relatif kecil, dan medannya sedikit miring dari sumbu kutubnya. Momentum kuadrupol Neptunus yang besar bisa jadi merupakan hasil dari keseimbangan pusat planet dan masalah geometri penggerak dinamo medan magnet4.
Kejutan busur Neptunus, tempat magnetosfer mulai memperlambat angin surya, terbentuk pada jarak 34,9 kali radius planet ini. Magnetopause, tempat tekanan magnetosfer mengimbangi angin surya, terbentuk pada jarak 23–26,5 kali radius Neptunus. Ekor magnetosfer memanjang hingga 72 kali radius Neptunus, dan bisa jadi lebih panjang lagi.
Cincin planet
Neptunus memiliki sebuah sistem cincin planet, meski kurang kokoh daripada Saturnus. Cincin-cincin tersebut terdiri dari partikel es yang diselubungi bahan berdasar silikat atau karbon yang memberi warna merah pada cincin. Tiga cincin utamanya adalah Cincin Adams yang sempit, 63000 km dari pusat Neptunus, Cincin Le Verrier pada ketinggian 53000 km, dan Cincin Galle yang luas dan lemah pada ketinggian 42000 km. Perpanjangan lemah ke luar hingga Cincin Le Verier diberi nama Lassell; perpanjangan ini dibatasi oleh Cincin Arago di pinggiran luarnya pada ketinggian 57.000 km.
Cincin planet pertama ditemukan tahun 1968 oleh tim yang dipimpin Edward Guinan, namun akhirnya disimpulkan cincin ini belum lengkap. Bukti bahwa cincin-cincin tersebut memiliki celah pertama muncul pada okultasi bintang tahun 1984 ketika cincin tersebut mengaburkan sebuah bintang ketika tenggelam, bukan ketika muncul. Gambar yang diambil Voyager 2 tahun 1989 menyelesaikan masalah ini dengan memperlihatkan beberapa cincin lemah. Cincin ini memiliki struktur menggumpal, akibatnya belum diketahui namun bisa jadi karena interaksi gravitasi dengan satelit kecil di orbit dekat cincin.
Cincin terluar, Adams, terdiri dari lima busur utama yang diberi nama Courage, Liberté, Egalité 1, Egalité 2 dan Fraternité (Keberanian, Kebebasan, Kesetaraan dan Persaudaraan). Keberadaan busur-busur ini sulit dijelaskan karena hukum gerakan akan memprediksikan bahwa busur tersebut tersebar menjadi cincin seragam dalam kurun waktu yang sangat singkat. Para astronom sekarang yakin bahwa busur-busur tersebut mengitari Neptunus sesuai bentuknya sekarang akibat dampak gravitasi Galatea, sebuah satelit yang dekat dengan cincin ini.
Pengamatan dari Bumi pada tahun 2005 menunjukkan bahwa cincin Neptunus lebih tidak stabil daripada dugaan sebelumnya. Gambar yang diambil dari W. M. Keck Observatory tahun 2002 dan 2003 memperlihatkan kerusakan pada cincin jika dibandingkan dengan gambar dari Voyager 2. Karena itu, sepertinya busur Liberté akan menghilang selambat-lambatnya satu abad berikutnya.
Iklim
Salah satu perbedaan antara Neptunus dan Uranus adalah tingkat aktivitas meteorologinya. Ketika Voyager 2 terbang melewati Uranus pada tahun 1986, planet ini terlihat lemah. Sebenarnya,Neptunus memiliki fenomena cuaca luar biasa ketika Voyager 2 melintasinya pada tahun 1989.
Cuaca Neptunus dapat dikenali dari sistem badai dinamisnya yang ekstrem, dengan angin mencapai kecepatan 600 m/detik—hampir menyamai aliran supersonik. Selain itu, dengan melacak gerakan awan tetap, kecepatan angin juga ditunjukkan beragam mulai dari 20 m/detik ke timur hingga 325 m/detik ke barat. Di puncak awan, angin kuat memiliki kecepatan yang berkisar antara 400 m/detik di sepanjang khatulistiwa hingga 250 m/detik di kutub. Kebanyakan angin di Neptunus berembus dengan arah melawan rotasi planet. Pola angin yang umum menunjukkan adanya rotasi searah di lintang tinggi vs. rotasi menghulu di lintang bawah. Perbedaan arah aliran diduga merupakan "efek kulit" dan bukan karena proses atmosfer dalam apapun. Di lintang 70° S, angin jet berkecepatan tinggi berembus dengan kecepatan 300 m/detik.
Limpahan metana, etana dan etina di khatulistiwa Neptunus 10–100 kali lebih besar daripada di kutubnya. Ini ditafsirkan sebagai bukti adanya pembalikan massa air di khatulistiwa dan penyurutan di kutub.
Pada tahun 2007 ditemukan bahwa troposfer atas kutub selatan Neptunus 10 °C lebih panas daripada keseluruhan Neptunus, yang suhu rata-ratanya sekitar −200 °C (70 K). Perbedaan panas ini cukup untuk membiarkan metana, di manapun membeku di atmosfer atas Neptunus, mencair sebagai gas melintasi kutub selatan dan ke luar angkasa. "Titik panas" relatif ini dikarenakan kemiringan sumbu Neptunus, yang memaparkan kutub selatan ke Matahari selama seperempat terakhir tahun Neptunus, atau 40 tahun Bumi. Ketika Neptunus perlahan bergerak menuju sisi lain Matahari, kutub selatan akan gelap dan kutub utara terang, mengakibatkan pelepasan metana berpindah ke kutub utara.
Akibat perubahan musim, pengamatan di pita awan belahan selatan Neptunus menunjukkan adanya peningkatan ukuran dan albedo. Peristiwa ini pertama kali terlihat tahun 1980 dan diperkirakan akan terus berlangsung hingga 2020. Periode orbit Neptunus yang panjang menghasilkan musim-musim yang berlangsung selama 40 tahun.
Badai
Pada tahun 1989, Titik Gelap Besar, sebuah sistem badai antisiklon sebesar 13000×6600 km,[65] ditemukan oleh Voyager 2 NASA. Badai ini menyerupai Titik Merah Besar Yupiter. Sekitar lima tahun kemudian, pada 2 November 1994, Teleskop Antariksa Hubble tidak melihat Titik Gelap Besar di planet ini. Sebuah badai baru yang mirip dengan Titik Gelap Besar justru ditemukan di belahan utara Neptunus.
Scooter (Skuter) adalah badai lain, sebuah kelompok awan putih jauh di selatan Titik Gelap Besar. Dijuluki Scooter karena ketika pertama kali diamati beberapa bulan sebelum penerbangan Voyager 2 1989, titik ini bergerak lebih cepat daripada Titik Gelap Besar. Subsequent images revealed even faster clouds. Titik Gelap Kecil merupakan badai siklon selatan, badai terkencang kedua yang diamati selama penerbangan tahun 1989. Awalnya tampak gelap, namun ketika Voyager 2 mendekati planet ini, inti cerah terbentuk dan dapat dilihat di sebagian besar gambar beresolusi tinggi.
Titik gelap Neptunus diduga terbentuk di troposfer pada ketinggian yang lebih rendah daripada lapisan awan cerah, sehingga titik ini muncul sebagai lubang di lapisan awan atas. Sebagai fitur stabil yang terus ada hingga beberapa bulan, titik gelap ini dianggap sebagai struktur vorteks.[46] Titik gelap ini sering dikaitkan dengan awan metana cerah tetap yang terbentuk di sekitar lapisan tropopause. Ketetapan awan memperlihatkan bahwa sejumlah bekas titik gelap akan terus ada sebagai siklon meski tidak lagi tampak sebagai sesuatu yang gelap. Titik gelap bisa menghilang jika bermigrasi terlalu dekat dengan khatulistiwa atau melalui serangkaian mekanisme yang tidak diketahui.
Panas internal
Cuaca Neptunus yang beragam jika dibandingkan dengan Uranus diyakini disebabkan oleh panas internalnya yang tinggi. Meski Neptunus terletak setengah jarak dari Matahari seperti Uranus, dan hanya menerima 40% sinar Matahari, suhu permukaan kedua planet ini secara kasar setara. Wilayah atas troposfer Neptunus memiliki suhu rendah −2.214 °C (−1,941 K). Pada kedalaman tempat tekanan atmosfer mencapai 1 bar (100 kPa), suhunya mencapai −20.115 °C (−19,842 K). Jauh di dalam lapisan gas, suhu naik bertahap. Seperti Uranus, sumber pemanasan ini tidak diketahui, namun perbedaannya sangat besar: Uranus hanya memancarkan 1,1 kali energi yang diterima dari Matahari; sementara Neptunus 2,61 kali energi yang diterima dari Matahari. Neptunus adalah planet terjauh dari Matahari, namun energi internalnya mampu menggerakkan angin planet terkuat di Tata Surya. Beberapa penjelasan telah dikemukakan, termasuk pemanasan radiogenik dari inti planet, konversi metana di bawah tekanan tinggi menjadi hidrogen, intan dan hidrokarbon (hidrogen dan intan akan naik dan tenggelam, melepaskan energi potensial gravitasi), dan konveksi di atmosfer bawah yang menyebabkan gelombang gravitasi terpecah di atas tropopause.
Orbit dan rotasi
Jarak rata-rata antara Neptunus dan Matahari adalah 4,50 miliar km (sekitar 30,1 AU), dan menyelesaikan orbitnya setiap 164,79 tahun dengan variabilitas sekitar ±0,1 tahun.
Pada 11 Juli 2011, Neptunus menyelesaikan orbit barisentris pertamanya sejak ditemukan tahun 1846, meski tidak muncul pada posisi penemuannya di langit karena Bumi berada pada lokasi berbeda dalam orbitnya selama 365,25 hari. Akibat gerakan Matahari terhadap barisenter Tata Surya, pada 11 Juli Neptunus juga tidak berada pada posisi penemuannya terhadap Matahari; jika sistem koordinat heliosentris digunakan, garis bujur penemuannya tercapai pada 12 Juli 2011.
Orbit elips Neptunus berinklinasi 1,77° jika dibandingkan dengan Bumi. Akibat eksentrisitas sebesar 0,011, jarak antara Neptunus dan Matahari mencapai 101 juta km antara perihelion dan aphelion, titik terdekat dan terjauh planet dari Matahari di sepanjang jalur orbitnya.
Kemiringan sumbu Neptunus adalah 28,32°, sama seperti kemiringan Bumi (23°) dan Mars (25°). Akibatnya, planet ini mengalami perubahan musim yang sama seperti Bumi. Periode orbit Neptunus yang lama berarti musim-musim tersebut berlangsung selama 40 tahun Bumi. Periode rotasi siderealnya (hari) secara kasar yaitu 11,611 jam. Karena kemiringan sumbunya sama seperti Bumi, variasi panjang hari sepanjang tahunnya tidak terlalu ekstrem.
Karena Neptunus bukan benda padat, atmosfernya mengalami rotasi diferensial. Zona khatulistiwa yang lebar berotasi selama 18 jam, lebih lambat daripada rotasi medan magnetnya selama 16,1 jam. Rotasi terbalik terjadi di kawasan kutub yang berlangsung selama 12 jam. Rotasi diferensial planet ini paling menarik daripada planet-planet lain di Tata Surya, dan mengakibatkan adanya hembusan angin lintang yang kuat.
Resonansi orbit
Orbit Neptunus memiliki dampak besar terhadap wilayah di sekitarnya yang dikenal sebagai sabuk Kuiper. Sabuk Kuiper adalah cincin yang terdiri dari bebatuan es kecil, sama seperti sabuk asteroid namun lebih besar, membentang dari orbit Neptunus di 30 AU hingga 55 AU dari Matahari. Gravitasi Yupiter mendominasi sabuk asteroid dan membentuk strukturnya, begitu pula dengan gravitasi Neptunus yang mendominasi sabuk Kuiper. Sepanjang usia Tata Surya, beberapa kawasan sabuk Kuiper menjadi kurang stabil akibat gravitasi Neptunus dan menciptakan celah pada struktur sabuk. Kawasan antara 40 dan 42 AU adalah salah satu contohnya.
Memang ada orbit di kawasan kosong ini tempat objek dapat selamat sepanjang usia Tata Surya. Resonansi ini terjadi ketika periode orbit Neptunus sangat mirip dengan benda tersebut, yaitu sebesar 1:2 atau 3:4. Jika dikatakan sebuah benda mengorbit Matahari sekali setiap dua orbit Neptunus, benda tersebut hanya akan menyelesaikan setengah orbitnya ketika Neptunus kembali ke posisi aslinya. Resonansi terpadat ada di sabuk Kuiper, dengan 200 benda teridentifikasi, yaitu 2:3. Benda pada resonansi ini menyelesaikan 2 orbit setiap 3 orbit Neptunus, dan dikenal sebagai plutino karena benda sabuk Kuiper terbesar, Pluto, termasuk di antaranya. Meski Pluto secara rutin melintasi orbit Neptunus, resonansi sebesar 2:3 menjamin kedua planet tidak akan pernah bertabrakan.[97] Resonansi 3:4, 3:5, 4:7 dan 2:5 kurang padat.[98]
Neptunus memiliki beberapa benda troya yang menempati titik Lagrangian L4 Matahari-Neptunus— sebuah kawasan gravitasi stabil yang mengatur orbitnya. Benda troya Neptunus dapat dilihat dengan resonansi 1:1 bersama Neptunus. Troya Neptunus sangat stabil orbitnya dan mungkin memang terbentuk di pinggir Neptunus, bukan terjebak oleh gravitasinya. Benda pertama sekaligus satu-atunya yang teridentifikasi berkaitan dengan titik Lagrangian L5 jalur Neptunus adalah 2008 LC18.
Pembentukan dan perpindahan
Pembentukan raksasa es sulit untuk dimodelkan secara pasti. Berdasarkan model saat ini, metode akresi inti tidak dapat digunakan karena kepadatan materi di wilayah luar Tata Surya terlalu rendah. Berbagai hipotesis lain telah diajukan. Salah satunya adalah hipotesis yang mengusulkan bahwa raksasa es tidak dibentuk oleh akresi inti, tetapi oleh ketidakstabilan dalam cakram protoplanet awal, dan nantinya atmosfer mereka terembus jauh oleh radiasi dari bintang OB besar terdekat.
Konsep lain yang digunakan adalah bahwa Neptunus terbentuk di tempat yang lebih dekat dari Matahari. Di tempat tersebut kepadatan materi besar, dan lalu planet ini mengalami perpindahan ke orbitnya sekarang setelah penyingkiran cakram protoplanet bergas. Hipotesis perpindahan setelah pembentukan saat ini didukung karena lebih mampu menjelaskan keberadaan objek-objek kecil di wilayah trans-Neptunus. Penjelasan mengenai hipotesis ini yang paling banyak didukung dikenal dengan nama model Nice, yang membahas pengaruh perpindahan Neptunus dan planet raksasa lain terhadap struktur sabuk Kuiper.
Satelit
Neptunus diketahui memiliki 13 satelit. Satelit terbesar terdiri dari 99,5 persen massa di orbit sekitar Neptunus dan satu-satunya yang berbentuk sferoid adalah Triton, ditemukan oleh William Lassell 17 hari setelah penemuan Neptunus. Tidak seperti satelit planet besar lain di Tata Surya, Triton memiliki orbit menghulu, yang menandakan bahwa Triton terjebak oleh gravitasi Neptunus, bukannya terbentuk di tempat; Triton diduga pernah menjadi planet kerdil di sabuk Kuiper. Triton sangat dekat dengan Neptunus sehingga terjebak dalam rotasi sinkronisnya, dan secara perlahan bergerak spiral ke dalam akibat akselerasi pasang dan akan terbelah dalam kurun 3,6 miliar tahun ketika Triton mencapai batas Roche. Pada tahun 1989, Triton merupakan benda terdingin yang pernah diukur di tata surya, dengan perkiraan suhu sekitar −235 °C (38 K). Satelit kedua Neptunus (menurut urutan penemuannya), yaitu satelit ireguler Nereid, memiliki salah satu orbit paling eksentrik di antara semua satelit di tata surya. Eksentrisitas sebesar 0,7512 memberikannya apoapsis tujuh kali lebih panjang daripada periapsisnya dari Neptuus.
Sejak Juli hingga September 1989, Voyager 2 menemukan enam satelit Neptunus baru. Dari enam satelit tersebut, Proteus yang berbentuk ireguler terkenal sebagai benda padat besar yang tidak tertarik menjadi bentuk sferoid akibat gravitasinya sendiri. Meski merupakan satelit terbesar kedua Neptunus, massa Proteus hanya 0,25% dari massa Triton. Orbit empat satelit terdalam Neptunus—Naiad, Thalassa, Despina dan Galatea—sangat dekat dengan cincin Neptunus. Satelit terjauh selanjutnya, Larissa, ditemukan pada 1981 ketika satelit ini mengokultasi sebuah bintang. Okultasi ini terjadi pada busur cincin, namun ketika Voyager 2 mengamati Neptunus pada tahun 1989, okultasi ini dinyatakan terjadi akibat satelitnya. Lima satelit ireguler baru yang ditemukan antara tahun 2002 dan 2003 diumumkan pada tahun 2004. Karena Neptunus adalah dewa laut Romawi, satelit-satelit Planet ini diberi nama sesuai nama dewa-dewa laut selanjutnya.
Pengamatan
Neptunus tidak dapat dilihat dengan mata telanjang, karena memiliki tingkat kecerahan antara magnitudo +7.7 dan +8.0, yang bisa dikalahkan oleh satelit Galileo Yupiter, planet kerdil Ceres dan asteroid 4 Vesta, 2 Pallas, 7 Iris, 3 Juno dan 6 Hebe. Sebuah teleskop atau teropong kuat akan menunjukkan Neptunus sebagai lingkaran biru kecil, sama seperti Uranus.
Karena jarak Neptunus yang jauh dari Bumi, diameter sudut planet ini berkisar dari 2,2 hingga 2,4 detik busur, terkecil di antara planet-planet di Tata Surya. Ukuran semunya yang kecil menjadikan Neptunus sebagai planet yang paling menantang untuk dipelajari secara visual. Sebagian besar data teleskop sangat terbatas sampai peluncuran Teleskop Antariksa Hubble dan teleskop darat berukuran besar dengan optik adaptif.
Dari Bumi, Neptunus mengalami gerak menghulu setiap 367 hari, mengakibatkan terjadinya gerakan memutar berlawanan dengan bintang-bintang di belakangnya pada setiap oposisi. Gerakan memutar ini membawa Neptunus dekat dengan koordinat penemuan 1846 pada April dan Juli 2010 dan akan terjadi lagi pada Oktober dan November 2011.
Pengamatan Neptunus pada gelombang frekuensi radio memperlihatkan bahwa planet ini adalah sumber emisi bersinambungan dan semburan tidak menentu. Kedua sumber diyakini berasal dari putaran medan magnet planet. Di bagian inframerah spektrumnya, badai Neptunus terlihat lebih cerah dibandingkan sekitarnya yang lebih dingin, sehingga memungkinkan ukuran dan bentuk fitur-fitur planet ini siap dilacak.


Sumber : http://id.wikipedia.org/wiki/Neptunus
Planet Katai
Planet katai atau planet kerdil (bahasa Inggris: dwarf planet) adalah sebutan bagi benda-benda langit dalam Tata Surya yang sesuai dengan ciri-ciri berikut:
- mengorbit mengelilingi matahari
- mempunyai massa yang cukup untuk memiliki gravitasi tersendiri agar dapat mengatasi tekanan benda tegar (rigid body) sehingga benda angkasa tersebut mempunyai bentuk ekuilibrium hidrostatik (ben
tuk hampir bulat)
- belum "membersihkan lingkungan" (clearing the neighborhood; mengosongkan orbit agar tidak ditempati benda-benda angkasa berukuran cukup besar lainnya selain satelitnya sendiri) di daerah sekitar orbitnya
- bukan merupakan satelit sebuah planet atau benda angkasa nonbintang lainnya
Kategori "planet katai" ini diciptakan pada pertemuan Persatuan Astronomi Internasional pada 24 Agustus 2006. Berdasarkan definisi ini, Pluto harus berubah statusnya dari planet menjadi planet katai karena Pluto belum mengosongkan daerah di sekitar orbitnya (Sabuk Kuiper).
Anggota
Berikut adalah daftar benda angkasa yang telah diberikan status "planet katai":
Nama = Kategori = Diameter (km) = Massa (1021 kg)
Ceres = Asteroid = 974 ± 3 = 0,95
Pluto = Plutino = 2306 ± 20 = 13,05
Haumea = Plutoid = 1150 ± 250 = 4,2
Makemake = Plutoid = 1500 ± 400 = ~4
Eris = Piringan tersebar = <2340 = 16,7
Plutoid: Planet katai yang memiliki orbit di daerah trans-Neptunus

Sumber : http://id.wikipedia.org/wiki/Planet_Katai

Asteroid
Asteroid, pernah disebut sebagai planet minor atau planetoid, adalah benda berukuran lebih kecil daripada planet, tetapi lebih besar daripada meteoroid, umumnya terdapat di bagian dalam Tata Surya (lebih dalam dari orbit planet Neptunus). Asteroid berbeda dengan komet dari penampakan visualnya. Komet menampakkan koma ("ekor") sementara asteroid tidak.
Asteroid dalam sistem tatasurya
Aster
oid pertama yang ditemukan adalah 1 Ceres yang ditemukan pada tahun 1801 oleh Giuseppe Piazzi. Kala itu, asteroid disebut sebagai planetoid.
Sudah sebanyak ratusan ribu asteroid di dalam tatasurya kita diketemukan dan kini penemuan baru itu rata-rata sebanyak 5000 buah per bulannya. Pada 27 Agustus 2006, dari total 339.376 planet kecil yang terdaftar, 136.563 di antaranya memiliki orbit yang cukup dikenal sehingga bisa diberi nomor resmi yang permanen. Di antara planet-planet tersebut, 13.350[1] memiliki nama resmi (trivia: kira-kira 650 di antara nama ini memerlukan tanda pengenal). Nomor terbawah tetapi berupa planet kecil tak bernama yaitu (3360) 1981 VA; planet kecil yang dinamai dengan nomor teratas (kecuali planet katai 136199 Eris serta 134340 Pluto), yaitu 129342 Ependes.
Kini diperkirakan bahwa asteroid yang berdiameter lebih dari 1 km dalam sistem tatasurya tatasurya berjumlah total antara 1.1 hingga 1.9 juta. Astéroid terluas dalam sistem tatasurya sebelah dalam, yaitu 1 Ceres dengan diameter 900-1000 km. Dua asteroid sabuk sistem tatasurya sebelah dalam, yaitu 2 Pallas dan 4 Vesta; keduanya memiliki diameter ~ 500 km. Vesta merupakan asteroid sabuk paling utama yang kadang-kadang terlihat oleh mata telanjang (pada beberapa kejadian yang cukup jarang, asteroid yang dekat dengan bumi dapat terlihat tanpa bantuan teknis; lihat 99942 Apophis).
Massa seluruh asteroid Sabuk Utama diperkirakan sekitar 3.0-3.6×1021 kg, atau kurang lebih 4% dari massa bulan. Dari kesemuanya ini, 1 Ceres bermassa 0.95×1021 kg, 32% dari totalnya. Kemudian asteroid terpadat, 4 Vesta (9%), 2 Pallas (7%) dan 10 Hygiea (3%), menjadikan perkiraan ini menjadi 51%; tiga seterusnya, 511 Davida (1.2%), 704 Interamnia (1.0%) dan 3 Juno (0.9%), hanya menambah 3% dari massa totalnya. Jumlah asteroid berikutnya bertambah secara eksponensial walaupun massa masing-masing turun. Dikatakan bahwa asteroid Ida juga memiliki sebuah satelit yang bernama Dactyl.

Sumber : http://id.wikipedia.org/wiki/Asteroid

Sabuk Asteroid
Sabuk asteroid adalah bagian Tata Surya terletak kira-kira antara orbit planet Mars dan Jupiter. Daerah ini dipenuhi oleh sejumlah objek tak beraturan yang disebut asteroid atau planet kerdil. Sabuk asteroid disebut juga sebagai sabuk utama (main belt) untuk membedakan dari konsentrasi planet kerdil lainnya di dalam sistem tata surya, seperti Sabuk Kuiper dan scattered disc
Lebih da
ri separuh massa sabuk utama terdapat di empat terbesar objek: Ceres, 4 Vesta, 2 Pallas, dan 10 Hygiea. Kesemuanya berdiameter lebih dari 400 km, sementara Ceres, planet kerdil yang ada di sabuk utama memiliki diameter sekitar 950 kilometer. Selebihnya mempunyai berbagai ukuran sampai sekecil partikel debu. Distribusi penyebaran bahan asteroid ini sangat tipis sehingga kapal ruang angkasa dapat melewatinya tanpa celaka. Akan tetapi, ada tabrakan antara asteroid-asteroid besar, yang menghasilkan kumpulan asteroid yang memiliki karakteristik yang mirip (orbital dan komposisi). Tabrakan juga menghasilkan debu yang membentuk komponen utama cahaya zodiak (zodiacal light). Sebuah asteroid di dalam sabuk utama dapat dikategorikan berdasarkan spektrumnya, yang sebagian besar jatuh ke dalam tiga kelompok dasar: karbon (C-type), silikat (S-tipe), dan kaya logam (M-type)
Explorasi
sabuk asteroid adalah Pioneer 10. Saat itu ada isu bahwa puing-puing sabuk itu akan membahayakan pesawat luar angkasa tersebut. Namun akhirnya selamat tanpa insiden

Sumber : http://id.wikipedia.org/wiki/Sabuk_Asteroid


Sabuk Kuiper
Sabuk Kuiper (bahasa Inggris: Kuiper belt) adalah sebuah wilayah di Tata Surya yang berada dari sekitar orbit Neptunus (sekitar 30 AU) sampai jarak 50 AU dari Matahari. Objek-objek di dalam sabuk Kuiper ini disebut sebagai objek trans-Neptunus.
Hipotesis
Astronom pertama yang mengemukakan keberadaan sabuk ini adalah Frederick C. Leonard pada 1930 dan Kenneth E. Edgeworth tahun 1943. P
ada tahun 1951, Gerard Kuiper mengemukakan bahwa sabuk tersebut merupakan sumber dari komet berumur pendek (komet yang memiliki periode orbit kurang dari 200 tahun). Sabuk dan objek-objek di dalamnya dinamai sesuai dengan nama Kuiper setelah penemuan (15760) 1992 QB1.

Sumber : http://id.wikipedia.org/wiki/Sabuk_Kuiper

Awan Oort
Awan Oort (Inggris: Oort cloud) adalah awan komet berbentuk sferik yang dipercayai berada sekitar 1xE15 m/50.000 hingga 1xE16 m/100.000 AU dari matahari (sekitar 1.000 kali jarak Matahari ke Pluto).

Sumber : http://id.wikipedia.org/wiki/Awan_Oort

Komet
Komet adalah benda langit yang mengelilingi matahari dengan garis edar berbentuk lonjong atau parabolis atau hiperbolis.
Kata "komet" berasal dari bahasa Yunani, yang berarti "rambut panjang". Istilah lainnya adalah bintang berekor[3] yang tidak tidak tepat karena komet sama sekali bukan bintang[3]. Orang Jawa menyebutnya sebagai lintang kemukus karena memiliki ekor seperti buah kemukus yang
telah dikeringkan.
Komet terbentuk dari es dan debu. Komet terdiri dari kumpulan debu dan gas yang membeku pada saat berada jauh dari Matahari.[ Ketika mendekati Matahari, sebagian bahan penyusun komet menguap membentuk kepala gas dan ekor. Komet juga mengelilingi Matahari, sehingga termasuk dalam sistem tata surya. Komet merupakan gas pijar dengan garis edar yang berbeda-beda. Panjang "ekor" komet dapat mencapai jutaan km. Beberapa komet menempuh jarak lebih jauh di luar angkasa daripada planet. Beberapa komet membutuhkan ribuan tahun untuk menyelesaikan satu kali mengorbit Matahari.
agian-Bagian Komet
Bagian-bagian komet terdiri dari inti, koma, awan hidrogen, dan ekor. Bagian-bagian komet sebagai berikut.
- Inti, merupakan bahan yang sangat padat, diameternya mencapai beberapa kilometer, dan terbentuk dari penguapan bahan-bahan es penyusun komet, yang kemudian berubah menjadi gas.
- Koma, merupakan daerah kabut atau daerah yang mirip tabir di sekeliling inti.
- Lapisan hidrogen, yaitu lapisan yang menyelubungi koma, tidak tampak oleh mata manusia. Diameter awan hidrogen sekitar 20 juta kilometer.
- Ekor, yaitu gas bercahaya yang terjadi ketika komet lewat di dekat Matahari.
Inti komet adalah sebongkah batu dan salju. Ekor komet arahnya selalu menjauh dari Matahari. Bagian ekor suatu komet terdiri dari dua macam, yaitu ekor debu dan ekor gas. Bentuk ekor debu tampak berbentuk lengkungan, sedangkan ekor gas berbentuk lurus. Koma atau ekor komet tercipta saat mendekati Matahari yaitu ketika sebagian inti meleleh menjadi gas. Angin Matahari kemudian meniup gas tersebut sehingga menyerupai asap yang mengepul ke arah belakang kepala komet. Ekor inilah yang terlihat bersinar dari bumi. Sebuah komet kadang mempunyai satu ekor dan ada yang dua atau lebih.
Jenis-Jenis Komet
Berdasarkan bentuk dan panjang lintasannya, komet dapat diklasifikasikan menjadi dua, yaitu sebagai berikut.
- Komet berekor panjang, yaitu komet dengan garis lintasannya sangat jauh melalui daerah-daerah yang sangat dingin di angkasa sehingga berkesempatan menyerap gas-gas daerah yang dilaluinya. Ketika mendekati Matahari, komet tersebut melepaskan gas sehingga membentuk koma dan ekor yang sangat panjang. Contohnya, komet Kohoutek yang melintas dekat Matahari setiap 75.000 tahun sekali dan komet Halley setiap 76 tahun sekali.
- Komet berekor pendek, yaitu komet dengan garis lintasannya sangat pendek sehingga kurang memiliki kesempatan untuk menyerap gas di daerah yang dilaluinya. Ketika mendekati Matahari, komet tersebut melepaskan gas yang sangat sedikit sehingga hanya membentuk koma dan ekor yang sangat pendek bahkan hampir tidak berekor. Contohnya komet Encke yang melintas mendekati Matahari setiap 3,3 tahun sekali.
Nama-nama Komet
Sekarang telah dikenal banyak nama komet, antara lain sebagai berikut.
- Komet Kohoutek.
- Komet Arend-Roland dan Komet Maikos yang muncul pada tahun 1957.
- Komet Ikeya-Seki, ditemukan pada bulan September 1965 oleh dua astronom Jepang, yaitu Ikeya dan T. Seki.
- Komet Shoemaker-Levy 9 yang hancur pada tahun 1994.
- Komet Hyakutake yang muncul pada tahun 1996.
- Komet Hale-Bopp yang muncul pada tahun 1997 dan lainnya.
- Komet Lovejoy
- Komet Halley terakhir muncul pada tahun 1986 dan muncul setiap 76 tahun.
- Komet Elenin
- Komet Encke komet ini merupakan salah satu dengan orbit terpendek yaitu 3 tahun sekali
- Komet Brooks Ditemukan Juli 1911 penemunya William Robert Brooks dan nama belakangnya dijadikan nama komet ini
- Komet Lulin Ditemukan pada 11 Juli 2007
- Komet Hartley Komet ini nampak setiap 6 tahun sekali
- Komet Kopff namanya berasal dari nama penemunya yaitu August Kopff . Diperkirakan nampak setiap 6 tahun sekali

Sumber : http://id.wikipedia.org/wiki/Komet

Meteor & Meteorit
Meteor adalah penampakan jalur jatuhnya meteoroid ke atmosfer bumi, lazim disebut sebagai bintang jatuh. Penampakan tersebut disebabkan oleh panas yang dihasilkan oleh tekanan ram (bukan oleh gesekan, sebagaimana anggapan umum sebelum ini) pada saat meteoroid memasuki atmosfer. Meteor yang sangat terang, lebih terang daripada penampakan Planet Venus, dapat disebut sebagai bolide.

Jika suatu meteoroid tidak habis terbakar dalam perjalanannya di atmosfer dan mencapai permukaan bumi, benda yang dihasilkan disebut meteorit. Meteor yang menabrak bumi atau objek lain dapat membentuk impact crater.
Meteorit adalah batu meteor yang berhasil mencapai permukaan bumi. Disebut juga meteor setelah menembus atmosfer bumi tetapi belum mencapai permukaan bumi. Meteor merupakan asteroid kecil dari luar angkasa yang tertarik oleh gravitasi Bumi, ketika memasuki atmosfer bumi terjadi gesekan udara di lapisan ionosfer menyebabkan meteor menjadi panas dan terbakar menimbulkan cahaya terang sehingga kadang kala disebut bintang jatuh.
Jika batu meteor sangat besar tidak habis di lapisan udara ionosfer maka akan jatuh sampai ke Bumi yang disebut Meteorit. Di Indonesia, meteorit bisa ditemukan di musium geologi Bandung.
Meteorit adalah bahan baku pamor keris yang disukai para Empu. Keris yang mendapat campuran meteorit biasanya ringan namun sangat kuat karena mengandung logam langka, seperti titanium.

Sumber :
http://id.wikipedia.org/wiki/Meteor
http://id.wikipedia.org/wiki/Meteorit

0 komentar:

Posting Komentar